T. Tsukuda et al. / Inorganica Chimica Acta 384 (2012) 149–153
153
Ph
Ph
Ph Ph
P
P
S
S
n+
M
H2C
+
Ph
X
Ph
S
P
S
P
P
P
P
Ph
Ph
Ph Ph
Cu
P
Ph
In the presence of Zn(II)
(catalytic reaction)
S
Ph
P
P
S
H2C
M
dppm, in the presence of Cu(I)
(stoichometric reaction)
S
Ph
Ph
P
P
Ph
P
Ph
P
S
M
H2C
Ph Ph
P
P
S
P
S
S
Ph
Ph
H2C
P
Ph
M
Sulfur transfer
Ph
P
P
Ph Ph
P
P
P
S
S
dppp in the presence of Cu(I)
(No transfer reaction)
H2C
Cu
P
Ph Ph
Scheme 2.
[3] J.G.H. du Preez, K.U. Knabl, L. Krüger, B.J.A.M. van Brecht, Solvent Ectr. Ion Exch.
10 (1992) 729.
4. Conclusion
[4] (a) M. Afzaal, K. Ellwood, N.L. Pickett, P. O’Brien, J. Raftery, J. Waters, J. Mater.
Chem. 14 (2004) 1310;
It has been found that sulfur transfer reactions from a phos-
phine sulfide (dppmS2) bridging by a methylene group to various
phosphines occur in the presence of metal ions. In the presence
of Cu(I), dppmS2 and diphosphine bridged by a methylene or an
amino group (dppm or dppa), underwent quantitative formation
of four-coordinate complexes coordinated by two diphosphine
monosulfides. Sulfur transfer reaction from dppmS2 to dppp did
not occur in the presence of Cu(I), but a simple heteroleptic com-
plex, [Cu(dppp)(dppmaS2)]+, was obtained. In the presence of Zn(II)
ion, the transfer reaction from dppmS2 to many diphosphines ex-
cept dppbz and trans-dppet proceeds catalytically. The difference
in the reactivity of the diphosphines suggests that the tendency
to make chelates is one of the key factors to accept a sulfur atom
for diphosphine ligands.
Another important result in this study is the quantitative for-
mation of [Cu(dppmS)2]. This may be due to the fact that the prod-
uct has stable five-membered chelates as compared to the starting
ligands dppmS2 and dppm, which potentially make less stable se-
ven- and four-membered chelates. The Cu(I) complex is also of
importance from the point of view that the complexes can be re-
garded as an intermediate in the catalytic system mediated by
the Zn(II) ion.
(b) M. Afzaal, D. Crouch, P. O’Brien, J.-H. Park, J. Mater. Sci.: Mater. Elecron. 13
(2003) 555.
[5] (a) R.K. Reigle, D.J. Casadonte Jr., S.G. Bott, J. Chem. Crystallogr. 24 (1994) 753;
(b) R.K. Reigle, D.J. Casadonte Jr., S.G. Bott, J. Chem. Crystallogr. 24 (1994) 769.
[6] A. Dairiki, T. Tsukuda, K. Matsumoto, T. Tsubomura, Polyhedron 28 (2009)
2730.
[7] (a) S. Aizawa, A. Majumder, Y. Yokoyama, M. Tamai, D. Maeda, A. Kitamura,
Organometallics 28 (2009) 6067;
(b) S. Aizawa, A. Majumder, D. Maeda, A. Kitamura, Chem. Lett. 38 (2009) 18;
(c) S. Aizawa, M. Tamai, M. Sakuma, A. Kubo, Chem. Lett. 36 (2007) 130.
[8] (a) C. Daniliuc, C. Druckenbrodt, C.G. Hrib, F. Ruthe, A. Blaschette, P.G. Jones,
W.-W. du Mont, Chem. Commun. (2007) 2060;
(b) A.M. Brondie, G.A. Rodley, C.J. Wilkins, J. Chem. Soc. A (1969) 2927;
(c) W.-W. du Mont, Z. Naturforsch. B: Anorg. Chem. Org. Chem. 40 (1985)
1453;
(d) W.-W. du Mont, H.J. Kroth, J. Organomet. Chem. 113 (1976) C35.
[9] (a) A.A. Eagle, R.W. Gable, S. Thomas, S.A. Sproules, C.G. Young, Polyhedron 23
(2004) 385;
(b) W. Adam, R.M. Bargon, Chem. Commun. (2001) 1910.
[10] (a) S. Kitagawa, H. Maruyama, S. Wada, M. Munakata, M. Nakamura, H.
Masuda, Bull. Chem. Soc. Jpn. 64 (1991) 2809;
(b) T. Tsukuda, A. Nakamura, T. Arai, T. Tsubomura, Bull. Chem. Soc. Jpn. 79
(2006) 288.
[11] I. Haiduc, I. Silaghi-Dumitrescu, Coord. Chem. Rev. 74 (1986) 127.
[12] G.J. Kubas, Inorg. Synth. 19 (1979) 90.
[13] CrystalClear, Area Detector Processing Software: Rigaku and Molecular
Structure Corp., 2000.
[14] SIR-92: A. Altomare, M.C. Burla, M. Camalli, M. Cascarano, C. Giacovazzo, A.
Guagliardi, G. Polidori, M. Camalli, J. Appl. Crystallogr. 27 (1994) 435.
[15] SIR-2004: M.C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G.L. Cascarano, L.
De Caro, C. Giacovazzo, G. Polidori, R. Spagna, J. Appl. Crystallogr. 38 (2005)
381.
Appendix A. Supplementary material
[16] G.M. Sheldrick, SHELXL-97: Program for Crystal Determination and Refinement,
University of Göttingen, Germany, 1997.
[17] Crystal Structure, ver.4.00: Single Crystal Structure Analysis Software,
Molecular Structure Corporation.
Supplementary data associated with this article can be found, in
[18] B. Mohr, E.E. Brooks, N. Rath, E. Deutsch, Inorg. Chem. 30 (1991) 4541.
[19] C. Sivasankar, J.K. Bera, M. Nethaji, A.G. Samuelson, J. Organomet. Chem. 689
(2004) 2726.
References
[20] T.S. Lobana, Prog. Inorg. Chem. 37 (1989) 495 (and references herein).
[21] C.J. Carmalt, A.H. Cowley, A. Decken, Y.G. Lawson, N.C. Norman, Acta
Crystallogr., Sect. C 52 (1996) 931.
[22] M. Kullberg, J. Stawinsky, J. Organomet. Chem. 690 (2005) 2571.
[23] T. Tsukuda, C. Nishigata, K. Arai, K. Matsumoto, T. Tsubomura, Polyhedron 28
(2009) 7.
[1] For reviews, see: (a) C. Silvestru, J.E. Drake, Coord. Chem. Rev. 223 (2001) 117;
(b) T.Q. Ly, J.D. Woollins, Coord. Chem. Rev. 176 (1998) 451;
(c) I. Haiduc, in: J.A. McCleverty, T.J. Meyer (Eds.), Comprehensive
Coordination Chemistry II, Elsevier Ltd., Amsterdam, 2003, p. 323.
[2] H. Rudler, B. Denise, J.R. Gregorio, J. Vaissermann, Chem. Commun. (1997)
2299.