K. C. Mascall, P. A. Jacobi / Tetrahedron Letters 53 (2012) 1620–1623
1623
7. For synthetic studies toward the furanosteroid class of compounds, see: (a)
Moffatt, J. S. J. Chem. Soc. (C) 1966, 734; (b) Yasuchika, Y.; Kenji, H.; Kanematsu,
K. Chem. Commun. 1987, 515; (c) Broka, C. A.; Ruhland, B. J. Org. Chem. 1992, 57,
4888; (d) Carlina, R.; Higgs, K.; Older, C.; Randhawa, S.; Rodrigo, R. J. Org. Chem.
1997, 62, 2330; (e) Boynton, J.; Hanson, J. R.; Kiran, I. J. Chem. Res. (S) 1999, 638;
(f) Wright, D. L.; Robotham, C. V.; Aboud, K. Tetrahedron Lett. 2002, 43, 943; (g)
Sessions, E. H.; O’Connor, R. T.; Jacobi, P. A. Org. Lett. 2007, 9, 3221; (h) Muller,
K. M.; Keay, B. A. Synlett 2008, 1236; (i) Sundstrom, T. J.; Wright, D. L. Synlett
2010, 2875.
to study these tetracyclic systems in greater detail. Further trans-
formations of 4 and its derivatives are currently under investiga-
tion, and will be reported in due course.
Acknowledgments
Financial support of this work by the National Science Founda-
tion, CHE-0646876, and Dartmouth College is gratefully acknowl-
edged. We are grateful to Professor Russell Hughes of the
Dartmouth College Chemistry Department for carrying out DFT
calculations on compounds syn-4 and anti-4.18
8. Sessions, E. H.; Jacobi, P. A. Org. Lett. 2006, 8, 4125.
9. Burgi, H. B.; Dunitz, J. D. Acc. Chem. Res. 1983, 16, 153.
10. Cagniant, P.; Cagniant, D. In Advances in Heterocyclic Chemistry; Katritzky, A. R.,
Boulton, A. J., Eds.; Academic Press: New York, 1975; Vol. 18, pp 337–473.
11. Representative examples of cyclodehydration of aryloxyketones in synthesis:
(a) Hirai, Y.; Doe, M.; Kinoshita, T.; Morimoto, Y. Chem. Lett. 2004, 33, 136; (b)
Marugán, J. J.; Manthey, C.; Anaclerio, B.; LaFrance, L.; Lu, T.; Markotan, T.;
Leonard, K. A.; Crysler, C.; Eisennagel, S.; Dasgupta, M.; Tomczuk, B. J. Med.
Chem. 2005, 48, 926; (c) Kedrowski, B. L.; Hoppe, R. W. J. Org. Chem. 2008, 73,
5177; (d) Davydenko, I. G.; Slominskii, Y. L.; Kalchenko, O. I.; Gutov, A. V.;
Chernega, A. N.; Tolmachev, A. I. Russ. Chem., Bull. Int. Ed 2008, 57, 159; (e) Kim,
I.; Choi, J. Org. Biomol. Chem. 2009, 7, 2788; (f) Kim, K.; Kim, I. Org. Lett. 2010, 12,
5314.
Supplementary data
Supplementary data (experimental and NMR spectra for all new
compounds) associated with this article can be found, in the online
12. (a) Mal, D.; Roy, H. N.; Hazra, N. K.; Adhikari, S. Tetrahedron 1997, 53, 2177; (b)
Dolson, M. G.; Jackson, D. K.; Swenton, J. S. J. Chem. Soc., Chem. Commun 1979,
327.
References and notes
13. Stearns, B. A.; Clark, R. WO 2010/085820 A2, 2010.
14. Representative examples of acids tested include: TiCl4, AlCl3, BF3ÁOMe2, BCl3,
Ga(OTf)3, Bi(OTf)3, CF3CO2H, CF3SO3H, p-TsOH, H2SO4, PPA, P2O5-CH3SO3H
(Eaton’s reagent). Except for CF3SO3H and PPA, these acids resulted in either
dealkylation of 13, decomposition, or no reaction.
1. For reviews, see: (a) Hanson, J. R. Nat. Prod. Rep. 1995, 12, 381; (b) Wipf, P.;
Halter, R. J. Org. Biomol. Chem. 2005, 3, 2053.
2. (a) Brian, P. W.; McGowan, J. C. Nature (London) 1945, 156, 144; (b) Vischer, E.
B.; Howland, S. R.; Raudnitz, H. Nature 1950, 165, 528; (c) Powis, G.;
Bonjouklian, R.; Berggren, M. M.; Gallegos, A.; Abraham, R.; Ashendel, C.;
Zalkow, L.; Matter, W. F.; Dodge, J.; Grindey, G.; Vlahos, C. J. Cancer Res. 1994,
54, 2419; (d) Wymann, M. P.; Bulgarelli-Leva, G.; Zvelebil, M. J.; Pirola, L.;
VanHaese-Broeck, B.; Waterfield, M. D.; Panayotou, G. Mol. Cell. Biol. 1996, 16,
1722; (e) Norman, B. H.; Paschal, J.; Vlahos, C. J. Bioorg. Med. Chem. Lett. 1995, 5,
1183; (f) Norman, B. H.; Shih, C.; Toth, J. E.; Ray, J. E.; Dodge, J. A.; Johnson, D.
W.; Rutherford, P. G.; Schultz, R. M.; Worzalla, J. F.; Vlahos, C. J. J. Med. Chem.
1996, 39, 1106.
3. Wipf, P.; Minion, D. J.; Halter, R. J.; Berggren, M. I.; Ho, C. B.; Chiang, G. G.;
Kirkpatrick, L.; Abraham, R.; Powis, G. Org. Biomol. Chem. 1911, 2004, 2.
4. Anderson, E. A.; Alexanian, E. J.; Sorensen, E. J. Angew. Chem., Int. Ed. 2004, 43,
1998.
5. (a) Sato, S.; Nakada, M.; Shibasaki, M. Tetrahedron Lett. 1996, 37, 6141; (b)
Mizutani, T.; Honzawa, S.; Tosaki, S.-Y.; Shibasaki, M. Angew. Chem., Int. Ed.
2002, 41, 4680.
15. Sessions, E. H. Ph.D. Dissertation, Dartmouth College, 2006.
16. We found that commercially available TMSI worked best in this reaction. Other
reagents such as BBr3 (McOmie, J. F. W.; Watts, M. L.; West, D. E. Tetrahedron,
1968, 24, 2289) and in-situ generated TMSI (Olah, G. A.; Narang, S. C.; Balaram
Gupta, B. G.; Malhotra, R. J. Org. Chem. 1979, 44, 1247) did not work as well. For
a review of ether cleavage, see: Bhatt, M. V.; Kulkarni, S. U. Synthesis, 1983, 249.
17. Representative procedure for the Mukaiyama-aldol cyclization of 5f–4.
Aldehyde 5f (0.20 mmol, 1.0 equiv) is dissolved in dry CH2Cl2 (21 mL) at rt
under nitrogen, and TiCl4 (0.42 mmol of a 1.0 M solution in CH2Cl2, 2.1 equiv) is
added dropwise. The resulting dark–green reaction mixture is stirred at rt for
45–50 min (prolonged reaction times cause decomposition), then diluted with
CH2Cl2 and washed with water. The aqueous layer is extracted twice with
CH2Cl2 and the combined organic layers are washed with brine and dried over
MgSO4. After concentration, the crude product mixture is purified by flash
chromatography to give syn-4 and anti-4 as unstable brown oils.
18. Calculations were carried out using Jaguar 7.7 (B3LYP/LACV3P⁄ ⁄ + +); Poisson-
Boltzmann solvation method.
6. (a) Souza, F. E. S.; Rodrigo, R. Chem. Commun. 1947, 1999, 19; (b) Lang, Y.; Souza,
F. E. S.; Xu, X.; Taylor, N. J.; Assoud, A. Rodrigo, R J. Org. Chem. 2009, 74, 5429.