greenish as that in the presence of nanofiber 1ÁCa2+ (Fig. S4,
ESIw), supporting that efficient FRET between 2 and 3 didn’t
occur without the nanofiber 1ÁCa2+. These results demonstrate
that the supramolecular nanofiber 1ÁCa2+ can function as a
robust and versatile nano-platform not only in a semi-wet gel
system but also under dry conditions.
3 (a) S. Kiyonaka, K. Sada, I. Yoshimura, S. Shinkai, N. Kato and
I. Hamachi, Nat. Mater., 2004, 3, 58–64; (b) Y. Koshi, E. Nakata,
H. Yamane and I. Hamachi, J. Am. Chem. Soc., 2006, 128,
10413–10422; (c) A. Wada, S.-i. Tamaru, M. Ikeda and
I. Hamachi, J. Am. Chem. Soc., 2009, 131, 5321–5330; (d) S.-i.
Tamaru, M. Ikeda, Y. Shimidzu, S. Matsumoto, S. Takeuchi and
I. Hamachi, Nat. Commun., 2010, 1, 20, DOI: 10.1038/
ncomms1018; (e) M. Ikeda, R. Ochi and I. Hamachi, Lab Chip,
2010, 10, 3325–3334; (f) M. Ikeda, T. Yoshii, T. Matsui, T. Tanida,
H. Komatsu and I. Hamachi, J. Am. Chem. Soc., 2011, 133,
1670–1673.
4 Recent reviews on supramolecular hydrogel: (a) L. A. Estroff and
A. D. Hamilton, Chem. Rev., 2004, 104, 1201–1217; (b) M. de Loos,
B. L. Feringa and J. H. van Esch, Eur. J. Org. Chem., 2005,
3615–3631; (c) A. R. Hirst, B. Escuder, J. F. Miravet and
D. K. Smith, Angew. Chem., Int. Ed., 2008, 47, 8002–8018.
5 (a) H. Komatsu, S. Matsumoto, S.-i. Tamaru, K. Kaneko,
M. Ikeda and I. Hamachi, J. Am. Chem. Soc., 2009, 131,
5580–5585; (b) D. Kiriya, M. Ikeda, H. Onoe, M. Takinoue,
H. Komatsu, Y. Shimoyama, I. Hamachi and S. Takeuchi,
Angew. Chem., Int. Ed., DOI: 10.1002/ange.201104043, in press.
6 (a) T. D. James, K. R. A. S. Sandanayake and S. Shinkai,
Angew. Chem., Int. Ed., 1996, 35, 1910–1922; (b) T. D. James,
M. D. Phillips and S. Shinkai, Boronic Acids in Saccharide
Recognition, The Royal Society of Chemistry, Cambridge, 2006;
(c) C. J. Mustoand and K. S. Suslick, Curr. Opin. Chem. Biol.,
2010, 14, 758–766.
7 FRET phenomenon was clearly evident from the comparison
of fluorescence spectra among supramolecular hydrogel 1ÁCa2+
containing either 2 or 3 and the both (see Fig. S1, ESIw).
8 The total fluorescence intensity decreased upon the addition of
catechol derivatives, suggesting that they act as quenchers.
9 (a) S. Arimori, M. L. Bell, C. S. Oh, K. Frimat and T. D. James,
Chem. Commun., 2001, 1836–1837; (b) J. N. Cambre and
B. S. Sumerlin, Polymer, 2011, 52, 4631–4643; (c) H. Shibata,
Y. J. Heo, T. Okitsu, Y. Matsunaga, T. Kawanishi and
S. Takeuchi, Proc. Natl. Acad. Sci. U. S. A., 2010, 107,
17894–17898; (d) Y. J. Heo, H. Shibata, T. Okitsu, T. Kawanishi
and S. Takeuchi, Proc. Natl. Acad. Sci. U. S. A., 2011, 108,
13399–13403.
We demonstrated that the gel-based sensor is capable of
detecting polyols such as catechol, dopamine, and catechin not
only under semi-wet conditions, but also under dry conditions
using a paper platform. Paper matrices such as paper chromato-
graphy, litmus paper, and so on have been used extensively in
analytical and clinical chemistry. Very recently, patterned paper
devices bearing microfluidic channels inside them have been
actively developed to control the flow of solutions.11 Although
the present sensor still needs to be improved further, especially
in terms of sensitivity and color discrimination for practical
applications,12 we expect that supramolecular nanofiber platforms
enable us to fabricate hydrophobic nano-domains inside paper
devices and thus offer a unique opportunity to develop rapid
and inexpensive diagnostic tools.
This work was supported in part by the JST (Japan Science
and Technology Agency), CREST program and the global
COE program, ‘‘Integrated Materials Science’’ of the Ministry of
Education, Culture, Science, Sports, and Technology (Japan).
MI thanks Terumo Life Science Foundation for financial
supports. We acknowledge Dr K. Kuwata (Kyoto University)
for HRMS measurements.
Notes and references
1 For recent reviews: (a) K. M. Sapsford, L. Berti and I. L. Medintz,
Angew. Chem., Int. Ed., 2006, 45, 4562–4588; (b) S. L. Wiskur,
H. Ait-Haddou, J. J. Lavigne and E. V. Anslyn, Acc. Chem. Res.,
2001, 34, 963–972; (c) L. Basabe-Desmonts, D. N. Reinhoudt and
M. Crego-Calama, Chem. Soc. Rev., 2004, 36, 993–1017;
(d) J. F. Callan, A. P. de Silva and D. C. Magri, Tetrahedron,
2005, 61, 8551–8588; (e) P. Anzenbacher, Jr., P. Lubal, P. Bucek,
M. A. Palacios and M. E. Kozelkova, Chem. Soc. Rev., 2010, 39,
3954–3979.
2 (a) I. Yoshimura, Y. Miyahara, N. Kasagi, H. Yamane, A. Ojida
and I. Hamachi, J. Am. Chem. Soc., 2004, 126, 12204–12205;
(b) S. Yamaguchi, T. Yoshimura, T. Kohira, S.-i. Tamaru and
I. Hamachi, J. Am. Chem. Soc., 2005, 127, 11835–11841.
10 CLSM images of the gel-based sensor paper showed fluorescence
of 3 along the surface of cellulose fibers in the filter paper matrix
(Fig. S3, ESIw), suggesting that nanofiber 1ÁCa2+ is entangled with
the cellulose fibers.
11 (a) A. W. Martinez, S. T. Phillips, M. J. Butte and
G. M. Whitesides, Angew. Chem., Int. Ed., 2007, 46, 1318–1320;
(b) A. W. Martinez, S. T. Phillips and G. M. Whitesides,
Anal. Chem., 2010, 82, 3–10 and references cited therein.
12 For polyphenol sensing in green tea using synthetic pores and
boronic acid derivatives, see: S. Hagihara, H. Tanaka and
S. Matile, J. Am. Chem. Soc., 2008, 130, 5656–5657.
c
2718 Chem. Commun., 2012, 48, 2716–2718
This journal is The Royal Society of Chemistry 2012