Organic Letters
Letter
195. (h) Rong, Z.-Q.; Li, Y.; Yang, G.-Q.; You, S.-L. Synlett 2011,
1033. For selected examples of intermolecular Stetter reaction:
(i) Enders, D.; Bonten, M. H.; Raabe, G. Synlett 2007, 885. (j) Enders,
D.; Han, J.; Henseler, A. Chem. Commun. 2008, 3989. (k) Liu, Q.;
Perreault, S.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 14066.
(l) DiRocco, D. A.; Oberg, K. M.; Dalton, D. M.; Rovis, T. J. Am.
(19) For reviews, see: (a) Yale, H. L. J. Med. Pharm. Chem. 1959, 1,
121. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem.
Soc. Rev. 2008, 37, 320. (c) Muller, K.; Faeh, C.; Diederich, F. Science
̈
2007, 317, 1881. (d) Filler, R.; Saha, R. Future Med. Chem. 2009, 1,
777. (e) Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo, C.;
́
́
̃
Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev.
2014, 114, 2432.
́
Chem. Soc. 2009, 131, 10872. (m) Sanchez-Larios, E.; Thai, K.;
(20) Another conceivable explanation for the outcome of the reaction
is that even if trifluoroacetaldehyde is present in the solution, the
Breslow intermediate derived from it is expected to have a poor
nucleophilicity; therefore, it may not react with another molecule of
trifluoroacetaldehyde to give 5.
(21) The cross acyloin reaction of p-chlorobenzaldehyde (1) with the
following hemiacetals/acetals (A−C) was tried under standard
conditions.
Bilodeau, F.; Gravel, M. Org. Lett. 2011, 13, 4942. (n) Jousseaume, T.;
Wurz, N. E.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50, 1410.
(o) DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2011, 133, 10402.
(p) Fang, X.; Chen, X.; Lv, H.; Chi, Y. R. Angew. Chem., Int. Ed. 2011,
50, 11782. (q) Bhunia, A.; Yetra, S. R.; Bhojgude, S. S.; Biju, A. T. Org.
Lett. 2012, 14, 2830. (r) Steward, K. M.; Gentry, E. C.; Johnson, J. S. J.
Am. Chem. Soc. 2012, 134, 7329. (s) Holmes, J. M.; Gravel, M. The
Stetter Reaction. In Comprehensive Organic Synthesis II; Molander, G.
A., Knochel, P., Eds.; Elsevier: 2014; Vol. 4, p 1384.
(5) Stetter, H.; Dambkes, G. Synthesis 1977, 403.
̈
(6) Matsumoto, T.; Ohishi, M.; Inoue, S. J. Org. Chem. 1985, 50, 603.
(7) Kuhl, N.; Glorius, F. Chem. Commun. 2011, 47, 573.
(8) (a) Dunkelmann, P.; Kolter-Jung, D.; Nitsche, A.; Demir, A. S.;
̈
(22) (a) Islami, M. R.; Hassani, Z. ARKIVOC 2008, 15, 280.
(b) Yang, Z.-J.; Liu, C.-Z.; Hu, B.-L.; Deng, C.-L.; Zhang, X.-G. Chem.
Commun. 2014, 50, 14554.
Siegert, P.; Lingen, B.; Baumann, M.; Pohl, M.; Muller, M. J. Am.
̈
Chem. Soc. 2002, 124, 12084. (b) Lehwald, P.; Richter, M.; Rohr, C.;
̈
Liu, H.-W.; Muller, M. Angew. Chem., Int. Ed. 2010, 49, 2389.
(9) Piel, I.; Pawelczyk, M. D.; Hirano, K.; Frohlich, R.; Glorius, F.
̈
̈
Eur. J. Org. Chem. 2011, 5475.
(10) (a) O’Toole, S. E.; Rose, C. A.; Gundala, S.; Zeitler, K.;
Connon, S. J. J. Org. Chem. 2011, 76, 347. (b) Rose, C. A.; Gundala, S.;
Connon, S. J.; Zeitler, K. Synthesis 2011, 190.
(11) Jin, M. Y.; Kim, S. M.; Han, H.; Ryu, D. H.; Yang, J. W. Org.
Lett. 2011, 13, 880.
(12) Langdon, S. M.; Wilde, M. M. D.; Thai, K.; Gravel, M. J. Am.
Chem. Soc. 2014, 136, 7539.
(13) Mathies, A. K.; Mattson, A. E.; Scheidt, K. A. Synlett 2009, 377.
(14) (a) Enders, D.; Grossmann, A.; Fronert, J.; Raabe, G. Chem.
Commun. 2010, 46, 6282. (b) Enders, D.; Henseler, A. Adv. Synth.
Catal. 2009, 351, 1749.
(15) (a) Linghu, X.; Johnson, J. S. Angew. Chem., Int. Ed. 2003, 42,
2534. (b) Linghu, X.; Potnick, J. R.; Johnson, J. S. J. Am. Chem. Soc.
2004, 126, 3070. (c) Tarr, J. C.; Johnson, J. S. Org. Lett. 2009, 11,
3870.
(16) (a) Rose, C. A.; Gundala, S.; Fagan, C.-L.; Franz, J. F.; Connon,
S. J.; Zeitler, K. Chem. Sci. 2012, 3, 735. (b) Thai, K.; Langdon, S. M.;
Bilodeau, F.; Gravel, M. Org. Lett. 2013, 15, 2214.
(17) (a) Murry, J. A.; Frantz, D. E.; Soheili, A.; Tillyer, R.;
Grabowski, E. J. J.; Reider, P. J. J. Am. Chem. Soc. 2001, 123, 9696.
(b) Mennen, S. M.; Gipson, J. D.; Kim, Y. R.; Miller, S. J. J. Am. Chem.
Soc. 2005, 127, 1654. (c) Li, G.-Q.; Dai, L.-X.; You, S.-L. Chem.
Commun. 2007, 852.
(18) (a) Loh, T.-P.; Li, X.-R. Chem. Commun. 1996, 1929. (b) Poras,
H.; Matsutani, H.; Yaruva, J.; Kusumoto, T.; Hiyama, T. Chem. Lett.
1998, 665. (c) Loh, T.-P.; Li, X.-R. Tetrahedron 1999, 55, 5611.
(d) Sakumo, K.; Kuki, N.; Kuno, T.; Takagi, T.; Koyama, M.; Ando,
A.; Kumadaki, I. J. Fluorine Chem. 1999, 93, 165. (e) Kumadaki, I.;
Jonoshita, S.; Harada, A.; Omote, M.; Ando, A. J. Fluorine Chem. 1999,
97, 61. (f) Ingrassia, L.; Mulliez, M. Synthesis 1999, 1731. (g) Gong, Y.;
Kato, K. J. Fluorine Chem. 2001, 108, 83. (h) Gong, Y.; Kato, K.;
Kimoto, H. Bull. Chem. Soc. Jpn. 2001, 74, 377. (i) Funabiki, K.;
Yamamoto, H.; Nagaya, H.; Matsui, M. Tetrahedron Lett. 2006, 47,
5507. (j) Funabiki, K.; Nagaya, H.; Ishihara, M.; Matsui, M.
Tetrahedron 2006, 62, 5049. (k) Zhang, F.; Peng, Y.; Liao, S.; Gong,
Y. Tetrahedron 2007, 63, 4636. (l) Landge, S. M.; Borkin, D. A.;
Torok, B. Tetrahedron Lett. 2007, 48, 6372. (m) Molteni, M.; Bellucci,
̈
̈
M. C.; Bigotti, S.; Mazzini, S.; Volonterio, A.; Zanda, M. Org. Biomol.
Chem. 2009, 7, 2286. (n) Carroccia, L.; Fioravanti, S.; Pellacani, L.;
Tardella, P. A. Synthesis 2010, 4096. (o) Kenis, S.; D’hooghe, M.;
Verniest, G.; Reybroeck, M.; Thi, T. A. D.; The, C. P.; Pham, T. T.;
Tornroos, K. W.; Tuyen, N. V.; Kimpe, N. D. Chem.Eur. J. 2013, 19,
̈
5966.
D
dx.doi.org/10.1021/ol502581b | Org. Lett. XXXX, XXX, XXX−XXX