Acc. Chem. Res., 2003, 36, 701; (d) N. Krause and A. S. K. Hashmi,
Modern Allene Chemistry, Wiley-VCH, Weinheim, 2004, vol. 2, ch. 10;
(e) S. Ma, Chem. Rev., 2005, 105, 2829; (f) S. Ma, Aldrichimica Acta,
2007, 40, 91; (g) H. F. Schuster and G. M. Coppola, Allenes in Organic
Synthesis, Wiley, New York, 1984; (h) S. Ma, Acc. Chem. Res., 2009,
42, 1679.
2 (a) A. Hoffmann-Roder and N. Klause, Angew. Chem., Int. Ed.,
¨
2004, 43, 1196; (b) N. Krause and A. Gerold, Angew. Chem., Int.
Ed. Engl., 1997, 36, 186; (c) T. Satoh, N. Hanaki, Y. Kuramochi,
Y. Inoue, K. Hosoya and K. Sakai, Tetrahedron, 2002, 58, 253;
(d) M. Ogasawara, T. Nagano and T. Hayashi, J. Org. Chem.,
2005, 70, 5764.
3 (a) X. Fan, Y. Wang, Y. Qu, H. Xu, Y. He, X. Zhang and J. Wang,
J. Org. Chem., 2011, 76, 982; (b) X. Zhang, X. Jia, L. Fang, N. Liu,
J. Wang and X. Fan, Org. Lett., 2011, 13, 5024.
Scheme 7 Preparation of 4,5,6-trisubstituted a-pyrones 3y–3ac and
indenes 4a–4e.
4 (a) G. P. McGlacken and I. J. S. Fairlamb, Nat. Prod. Rep., 2005,
22, 369; (b) I. J. S. Fairlamb, L. R. Marrison, J. M. Dickinson,
F.-J. Lu and J. P. Schmidt, Bioorg. Med. Chem., 2004, 12, 4285;
(c) P.-L. Wu, Y.-L. Hsu, T.-S. Wu, K. F. Bastow and K.-H. Lee,
Org. Lett., 2006, 8, 5207.
5 (a) H. Hagiwara, K. Kobayashi, S. Miya, T. Hoshi, T. Suzuki and
M. Ando, Org. Lett., 2001, 3, 251; (b) D. T. Puerta, J. Mongan,
B. L. Tran, J. A. McCammon and S. M. Cohen, J. Am. Chem.
Soc., 2005, 127, 14148; (c) S. Thaisrivongs, M. N. Janakiraman,
K.-T. Chong, P. K. Tomich, L. A. Dolak, S. R. Turner,
J. W. Strohbach, J. C. Lynn, M.-M. Horng, R. R. Hinshaw and
K. D. Watenpaugh, J. Med. Chem., 1998, 39, 2400;
(d) G. Appendino, M. Ottino, N. Marquez, F. Bianchi,
A. Giana, M. Ballero, O. Sterner, B. L. Fiebich and E. Munoz,
J. Nat. Prod., 2007, 70, 608.
6 S. Mochida, K. Hirano, T. Satoh and M. Miura, J. Org. Chem.,
2009, 74, 6295.
7 (a) R. C. Larock, M. J. Doty and X. Han, J. Org. Chem., 1999,
64, 8770; (b) T. Yao and R. C. Larock, J. Org. Chem., 2003,
68, 5936.
Scheme 8 Preparation of 3,4,5,6-tetrasubstituted a-pyrone 3ad and
indene 4f.
substrates 2y–2ac, from which, indenes (4a–4e) were obtained
in reasonably good yields (Scheme 7). From these reactions,
the corresponding 4,5,6-trisubstituted pyran-2-ones (3y–3ac)
could also be obtained. As a further aspect, we were able to
obtain a 3,4,5,6-tetrasubstituted 2H-pyran-2-one (3ad) together
with indene 4f from substrate 2ad (Scheme 8).
In summary, we have developed a novel and easy-to-perform
protocol for the preparation of 2H-pyran-2-ones through an
acid-catalyzed domino reaction of 3-hydroxyhexa-4,5-dienoates.
By tuning the substitution patterns of the substrates, 4,6-
disubstituted and 3,4,6-trisubstituted a-pyrones can be synthesized
with high efficiency. More interestingly, from substrates with
a methyl group on the internal position of the allene moiety,
indene derivatives could also be prepared together with 4,5,6-
trisubstituted or 3,4,5,6-tetrasubstituted a-pyrones. With advan-
tages such as readily available substrates, diversely substituted
products, free of sophisticated catalysts or reagents, and extremely
mild reaction conditions, this finding should be an important
implication in heterocyclic chemistry and related areas. Further
studies to expand substrate scope and have a possible deeper
insight into the reaction mechanism are currently underway.
We are grateful to the National Natural Science Foundation of
China (20972042, 21172057), Innovation Scientists and Technicians
Troop Construction Projects (104100510019), PCSIRT (IRT1061)
and 2012IRTSTHN006 for financial support.
8 S. Ma, S. Yin, L. Li and F. Tao, Org. Lett., 2002, 4, 505.
9 T. Luo, M. Dai, S.-L. Zheng and S. L. Schreiber, Org. Lett., 2011,
13, 2834.
10 J. Louie, J. E. Gibby, M. V. Farnworth and T. N. Tekavec, J. Am.
Chem. Soc., 2002, 124, 15188.
11 (a) S. Rousset, M. Abarbri, J. Thibonnet, A. Duchene and
J.-L. Parrain, Chem. Commun., 2000, 1987; (b) K. Cherry,
J.-L. Parrain, J. Thibonnet, A. Duchene and M. Abarbri, J. Org.
Chem., 2005, 70, 6669.
12 Y. Yamamoto, I. D. Gridnev, N. T. Patil and T. Jin, Chem.
Commun., 2009, 5075.
13 (a) T. Jin, M. Himuro and Y. Yamamoto, Angew. Chem., Int. Ed.,
2009, 48, 5893; (b) T. Jin, M. Himuro and Y. Yamamoto, J. Am.
Chem. Soc., 2010, 132, 5590; (c) T. Jin, J. Uchiyama, M. Himuro
and Y. Yamamoto, Tetrahedron Lett., 2011, 52, 2069;
(d) C. E. Song, D. Jung, S. Y. Choung, E. J. Roh and S. Lee,
Angew. Chem., Int. Ed., 2004, 43, 6183.
14 (a) A. J. Frontier and C. Collison, Tetrahedron, 2005, 61, 7577;
(b) H. Pellissier, Tetrahedron, 2005, 61, 6479; (c) V. M. Marx and
D. J. Burnell, Org. Lett., 2009, 11, 1229; (d) H.-F. Cui, K.-Y. Dong,
G.-W. Zhang, L. Wang and J.-A. Ma, Chem. Commun., 2007, 2284;
(e) H. Zheng, X. Xie, J. Yang, C. Zhao, P. Jing, B. Fang and X. She,
Org. Biomol. Chem., 2011, 9, 7755.
15 (a) H. G. Alt and A. Koppl, Chem. Rev., 2000, 100, 1205;
¨
(b) N. J. Clegg, S. Paruthiyil, D. C. Leitman and T. S. Scanlan,
J. Med. Chem., 2005, 48, 5989; (c) S. Ye, X. Yang and J. Wu,
Chem. Commun., 2010, 2950; (d) M. Lautens and T. Marquardt,
J. Org. Chem., 2004, 69, 4607; (e) F. Zhou, M. Yang and X. Lu,
Org. Lett., 2009, 11, 1405; (f) S. Ye and J. Wu, Org. Lett., 2011,
13, 5980.
Notes and references
1 (a) C. H. Robinson and D. F. Covey, in The Chemistry of Ketenes,
Allenes, and Related Compounds, ed. S. Patai, Wiley, Chichester, 1980,
p. 451; (b) S. R. Landor, in The Chemistry of the Allenes,
ed. S. R. Landor, Academic Press, London, 1982, p. 679; (c) S. Ma,
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 3121–3123 3123