been constructed via copper-catalyzed domino processes;
attractively, some tricyclic and tetracyclic systems, e.g.
imidazoindolone, pyrrolo[1,2-a]quinoxaline, pyrrolo[2,1-a]-
isoquinoline, pyrido[1,2-a]benzimidazole, and 4-oxo-indeno-
[1,2-b]pyrroles, have also been constructed.9,10 We are
interested in a copper-catalyzed domino process for effi-
cient synthesis of indole fused heterocycles.
Table 1. Optimization of the Coupling of N-(2-Bromobenzyl)-2-
iodoaniline with Malononitrilea
For various fused N-heterocycles prepared through
Ullmann-type domino coupling precesses,9 an activating
group (carbonyl or its equivalent) was generally employed
to speed-up the coupling process.7c,g,9aÀ9l Very recently,
Ma’s group reported an efficient cascade synthesis of
phenothiazine from a nonactivated system.9m However,
two attempted syntheses for 2-amino indole from a non-
activated system failed.8g,9l Herein we report a copper-
catalyzed domino synthesis of 5,12-dihydroindolo[2,1-b]-
quinazoline derivatives from nonactivated starting material.
For the model reaction, N-(2-bromobenzyl)-2-iodoani-
line (1a) and malononitrile (2a) were adopted, and the
reaction was screened by using 10 mol % CuI, 20 mol %
ligand, and 3.0 equiv of K2CO3 in DMSO at 90 °C under
argon. From various ligands (L1ÀL12, Table 1) screened,
trans-4-OH-L-proline (L1) which was reported to promote
CÀC coupling at À45 °C8a was identified to be the
yield
entry
catalyst
ligand
base
solvent
(%)b
1
CuI
CuI
CuI
CuI
CuI
CuI
CuI
CuI
CuI
CuI
CuI
CuI
CuI
CuI
CuI
Cu
L1
L2
L3
L4
L5
L6
L7
L8
L9
L10
L11
L12
L1
À
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
Cs2CO3
K3PO4
DBU
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMF
71
41
58
70
52
32
40
42
24
18
49
23
51c
30
20d
37
66
61
67
18
62
17
22
18
0
2
(8) For copper-catalyzed Ullman-type CÀC and CÀN bond forma-
tion: (a) Xie, X.; Chen, Y.; Ma, D. J. Am. Chem. Soc. 2006, 128, 16050.
(b) Yip, S. F.; Cheung, H. Y.; Zhou, Z.; Kwong, F. Y. Org. Lett. 2007, 9,
3469. (c) Xie, X.; Cai, G.; Ma, D. Org. Lett. 2005, 7, 4693. (d) Mino, T.;
Yagishita, F.; Shibuya, M.; Kajiwara, K.; Shindo, H.; Sakamoto, M.;
Fujita, T. Synlett 2009, 15, 2457. (e) Jiang, Y.; Wu, N.; Wu, H.; He, M.
Synlett 2005, 18, 2731. (f) Okuro, K.; Furuune, M.; Miura, M.; Nomura,
M. J. Org. Chem. 1993, 58, 7606. (g) Yang, X.; Fu, H.; Qiao, R.; Jiang,
Y.; Zhao, Y. Adv. Synth. Catal. 2010, 352, 1033. (h) Wang, F.; Liu, H.;
Fu, H.; Jiang, Y.; Zhao, Y. Org. Lett. 2009, 11, 2469. (i) Chen, Y.; Wang,
Y.; Sun, Z.; Ma, D. Org. Lett. 2008, 10, 625. (j) Wang, B.; Lu, B.; Jiang,
Y.; Zhang, Y.; Ma, D. Org. Lett. 2008, 10, 2761. (k) Shafir, A.;
Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 8742. (l) Klapars, A.;
Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421. (m)
Altman, R. A.; Anderson, K. W.; Buchwald, S. L. J. Org. Chem. 2008,
73, 5167. (n) Wang, D.; Ding, K. Chem. Commun. 2009, 45, 1891. (o) Lv,
X.; Bao, W. J. Org. Chem. 2007, 72, 3863. (p) Chen, Y.-J.; Chen, H.-H.
Org. Lett. 2006, 8, 5609. (q) Rao, H.; Jin, Y.; Fu, H.; Jiang, Y.; Zhao, Y.
Chem.;Eur. J. 2006, 12, 3636. (r) Lu, H.; Li, C. Org. Lett. 2006, 8, 5365.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
L1
L1
L1
L1
L1
L1
L1
L1
L1
L1
L1
L1
L1
CuBr
CuCl
Cu2O
CuI
CuI
CuI
CuI
CuI
CuI
CuI
CuI
(s) Minatti, A.; Buchwald, S. L. Org. Lett. 2008, 10, 2721. (t) Martın, R.;
´
Larsen, C. H.; Cuenca, A.; Buchwald, S. L. Org. Lett. 2007, 9, 3379. (u)
Chen, D.; Wang, Z.; Bao, W. J. Org. Chem. 2010, 75, 5768.
(9) Recent examples for N-heterocycles construction via copper-
catalyzed domino process: (a) Diao, X.; Xu, L.; Zhu, W.; Jiang, Y.;
Wang, H.; Guo, Y.; Ma, D. Org. Lett. 2011, 13, 6422. (b) Xu, H.; Fu, H.
Chem.;Eur. J. 2012, 18, 1180. (c) Liu, T.; Wang, R.; Yang, H.; Fu, H.
Chem.;Eur. J. 2011, 17, 6765. (d) Xu, S.; Lu, J.; Fu, H. Chem. Commun.
2011, 47, 5596. (e) Lu, J.; Gong, X.; Yang, H.; Fu, H. Chem. Commun.
2010, 46, 4172. (f) Cai, Q.; Li, Z.; Wei, J.; Fu, L.; Ha, C.; Pei, D.; Ding, K.
Org. Lett. 2010, 12, 1500. (g) Xu, W.; Jin, Y.; Liu, H.; Jiang, Y.; Fu, H.
Org. Lett. 2011, 13, 1274. (h) Lu, J.; Fu, H. J. Org. Chem. 2011, 76, 4600.
(i) Vaillard, V. A.; Rossi, R. A.; Martin, S. E. Org. Biomol. Chem. 2011,
9, 4927. (j) Zou, B.; Yuan, Q.; Ma, D. Angew. Chem., Int. Ed. 2007, 46,
2598. (k) Liu, X.; Fu, H.; Jiang, Y.; Zhao, Y. Angew. Chem., Int. Ed.
2009, 48, 348. (l) Kobayashi, K.; Komatsu, T.; Yokoi, Y.; Konishi, H.
Synthesis 2011, 764. (m) Ma, D.; Geng, Q.; Zhang, H.; Jiang, Y. Angew.
Chem., Int. Ed. 2010, 49, 1291.
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
DMAc
NMP
Dioxane
DME
0
trace
a Reaction conditions: N-(2-bromobenzyl)-2-iodoaniline (1 mmol),
malononitrile (1.2 mmol), catalyst (0.1 mmol), ligand (0.2 mmol),
base (3 mmol), solvent (2 mL), 90 °C, 16 h, under argon in sealed tube.
b Isolated yield. c 70 °C. d CuI (0.02 mmol), L1 (0.04 mmol).
(10) Recent examples for copper-catalyzed polycyclic systems con-
struction: (a) Malakar, C. C.; Schmidt, D.; Conrad, J.; Beifuss, U. Org.
Lett. 2011, 13, 1972. (b) Cai, Q.; Zhou, F.; Xu, T.; Fu, L.; Ding, K. Org.
Lett. 2011, 13, 340. (c) Barange, D. K.; Tu, Y.-C.; Kavala, V.; Kuo, C.-W.;
Yao, C.-F. Adv. Synth. Catal. 2011, 353, 41. (d) Wu, Z.; Huang, Q.;
Zhou, X.; Yu, L.; Li, Z.; Wu, D. Eur. J. Org. Chem. 2011, 5242. (e)
Wang, Z.-J.; Yang, J.-G.; Yang, F.; Bao, W. Org. Lett. 2010, 12, 3034. (f)
Verma, A. K.; Kesharwani, T.; Singh, J.; Tandon, V.; Larock, R. C.
Angew. Chem., Int. Ed. 2009, 48, 1138. (g) Yuen, J.; Fang, Y.-Q.;
Lautens, M. Org. Lett. 2006, 8, 653.
optimum ligand (entries 1À12, Table 1). A diminished
yield was obtained at 70 °C (entry 13, Table 1). Without
ligand, the yield was poor (entry 14, Table 1). A low
catalyst loading was not effective either (entry 15, Table 1).
Other copper sources, e.g. Cu, CuBr, CuCl, and Cu2O,
were found to be less effective (entries 16À19, Table 1).
Org. Lett., Vol. 14, No. 6, 2012
1421