Alkylarene Oxidation by NO /Polyoxophosphomolybdates
A R T I C L E S
3
oxidations of halides,10 alcohols, ketones and amines,11 phe-
nols,12 (alkyl)aromatics,13 dienes,14 alkanes,15 and sulfur contain-
ing compounds.16 From a mechanistic point of view there is
now quite abundant information indicating that the polyoxo-
molybdates act as electron-transfer oxidants toward one of the
reaction components, commonly, the organic substrate or
oxidant. The specific complete reaction pathway, thus, much
depends on the both the targeted oxidative transformation and
the oxidant employed. We have, in the past, studied the
mechanism of polyoxomolybdate-catalyzed reactions using
various oxidants including molecular oxygen,13e,14b nitrous
oxide,11e sulfoxides,13a and alkylhydroperoxides.15 Now we
present our studies on a novel system; the oxidation of
alkylaromatic substrates to acetates and aldehydes using nitrate
as the primary oxidant/oxygen donor.17 Synthetic aspects and
mechanistic insights are presented.
Figure 1. Oxidation of durene by nitrate in acetic acid with different
catalysts. 0.5 M durene, 0.1 M lithium nitrate, and 0.01 M polyoxometalate
in AcOH, 80 °C, Ar. Product yields defined as % mol alkylarene reacted/
mol nitrate vary slightly, (2%. Q ) tetrabutulammonium.
Results and Discussion
Synthetic Aspects. The synthetic objective of this research
was to carry out the selective oxidation of alkyl aromatic
substrates at the benzylic position with emphasis on preventing
over oxidation, i.e., avoiding the formation of the corresponding
carboxylic acid, eq 1. Classical aerobic Co2+/3+/Mn2+/3+/Br-
aerobic oxidations typically yield carboxylic acids as major
products.18 Toward this goal, the activity of different Keggin
type heteropolyacids, namely H3+xPVxMo12-xO40 and H3-
PW12O40, as catalysts was initially tested for the oxidation of
1,2,4,5-tetramethylbenzene (durene) as a model substrate with
nitrate salts to yield 2,4,5-trimethylbenzyl acetate and 2,4,5-
trimethylbenzaldehyde under the following reaction condi-
tions: 0.5 M durene, 0.1 M lithium nitrate, and 0.01 M
polyoxometalate in acetic acid at 80 °C under argon, Figure 1.
As may be observed, the vanadium-containing polyoxomolyb-
dates were slightly more active compared to the simple
H3PMo12O40 compound, while H3PW12O40 was not effective
nor was Mo(O)2acac2 or the neutral Q3PMo12O40 (Q ) tetrabu-
tylammonium). One may preliminarily conclude that both a
sufficiently high oxidation potential and acidic conditions are
needed for catalytic activity. No reaction takes place in the
absence of nitrate. In addition, it should also be noted that the
use of nitric acid in place of a nitrate salt (NaNO3 and LiNO3
gave virtually the same results) yielded 2,4,5-trimethylbenzoic
acid instead of the acetate or aldehyde.
(8) (a) Pope, M. T. Isopoly and Heteropoly Anions; Springer: Berlin, Germany,
1983. (b) Mu¨ller, A. Polyoxometalate Chemistry; Kluwer Academic:
Dordrecht, The Netherlands, 2001. (c) Kozhevnikov, I. V. Catalysis by
Polyoxometalates; Wiley: Chichester, U.K., 2002. (d) Hill, C. L.; Prosser-
McCartha, C. M. Coord. Chem. ReV, 1995, 143, 407-455. (e) Mizuno,
N.; Misono, M. Chem. ReV. 1998, 98, 171-192. (f) Neumann, R. Prog.
Inorg. Chem. 1998, 47, 317-370.
(9) (a) Matveev, K. I. Kinet. Catal. 1977, 18, 716-729. (b) Matveev, K. I.;
Kozhevnikov, I. V. Kinet. Catal. 1980, 21, 855-861. (c) Grate, J. R.;
Mamm, D. R.; Mohajan, S. Mol. Eng. 1993, 3, 205. (d) Grennberg, H.;
Bergstad, K.; Ba¨ckvall, J.-E. J. Mol. Catal. 1996, 113, 355-358. (e) Yokota,
T.; Fujibayashi, S.; Nishyama, Y.; S. Sakaguchi, Y. Ishii, J. Mol. Catal.
1996, 114, 113-119. (f) Bergstad, K.; Grennberg, H.; Ba¨ckvall, J.-E.
Organometallics 1998, 17, 45-50.
(10) (a) Neumann, R.; Assael, I.; J. Chem. Soc., Chem. Commun. 1998, 1285-
1287. (b) Branytskaya, O.; Neumann, R. J. Org. Chem. 2003, 68, 9510-
9512.
(11) (a) Bre´gault, J.-M.; El Ali, B.; Mercier, J.; Martin, J.; Martin, C. C. R.
Acad. Sci. II 1989, 309, 459-462. (b) El Ali, B.; Bre´gault, J.-M.; Mercier,
J.; Martin, J.; Martin, C.; Convert, O. J. Chem. Soc., Chem. Commun. 1989,
825-826. (c) Atlamsani, A.; Ziyad, M.; Bre´gault, J.-M. J. Chim. Phys.,
Phys.-Chim. Biol. 1995, 92, 1344-1364. (d) A. M. Khenkin, A. M.;
Neumann, R. J. Org. Chem. 2002, 67, 7075-7079. (e) Ben-Daniel, R.;
Neumann, R. Angew. Chem., Int. Ed. 2003, 42, 92-95. (f) Neumann, R.;
Levin, M. J. Org. Chem. 1991, 56, 5707-5710. (g) Ben-Daniel, R.; Alsters,
P. L.; Neumann, R. J. Org. Chem. 2001, 66, 8650-8653. (h) El Aakel, L.;
Launay, F.; Atlamsani, A.; Bregeault, J.-M. Chem. Commun. 2001, 2218-
2219. (i) Khenkin, A. M.; Vigdergauz, I.; Neumann, R. Chem.sEur. J.
2000, 6, 875-882.
(12) (a) Kholdeeva, O. A.; Golovin, A. V.; Maksimovskaya, R. I.; Kozhevnikov,
I. V. J. Mol. Catal. 1992, 75, 235-244. (b) Lissel, M.; Jansen van de Wal,
H.; Neumann, R. Tetrahedron Lett. 1992, 33, 1795-1798. (c) Kolesnik, I.
G.; Zhizhina, E. G.; Matveev, K. I. J. Mol. Catal. A: Chem. 2000, 153,
147-154.
(13) (a) Khenkin, A. M.; Neumann, R. J. Am. Chem. Soc. 2002, 124, 4198-
4199. (b) Neumann, R.; de la Vega, M. J. Mol. Catal. 1993, 84, 93-108.
(c) Nomiya, K.; Yanagibayashi, H.; Nozaki, C.; Kondoh, K.; Hiramatsu,
E.; Shimizu, Y. J. Mol. Catal. A 1996, 114, 181-190. (d) Khenkin, A.
M.; Neumann, R. Angew. Chem., Int. Ed. 2000, 39, 4088-4090. (e)
Khenkin, A. M.; Weiner, L.; Wang, Y.; Neumann, R. J. Am. Chem. Soc.
2001, 123, 8531-8542.
After the initial experiments on durene, the oxidation reaction
was tested on a series of substrates as presented in Table 1. As
a rule the acetate ester of the benzylic alcohol was observed to
be the major product, in most cases >80%, while the aldehyde
was the minor product. For substrates susceptible to aromati-
zation, such as tetralin and dihydroanthracene, the formation
of the aromatic product, naphthalene and anthracene, respec-
tively, was significant. There was virtually no nitration at either
the aromatic ring or benzylic position for the substrates noted,
except for highly ring-activated substrates such as 4-methylani-
sole where 10 mol % ring nitration was observed. The use of
H3PMo12O40 as catalyst yielded by and large similar acetate/
aldehyde ratios; however, there was sometimes considerable
nitration, ∼20-30% at the aromatic ring, presumably because
H3PMo12O40 is a weaker oxidant compared to H5PV2Mo10O40.
(14) (a) Neumann, R.; Lissel, M. J. Org. Chem. 1989, 54, 4607-4610. (b)
Neumann, R.; Levin, M. J. Am. Chem. Soc. 1992, 114, 7278-7286.
(15) Khenkin, A. M.; Neumann, R. J. Am. Chem. Soc. 2001, 123, 6437-6438.
(16) (a) Gall, R. D.; Faraj, M.; Hill, C. L. Inorg. Chem. 1994, 33, 5015-5021.
(b) Kozhevnikov, I. V.; Simagina, V. I.; Varnakova, G. V.; Matveev, K. I.
Kinet. Catal. 1979, 20, 506-511. (c) Dzhumakaeva, B. S.; Golodov, V.
A. J. Mol. Catal. 1986, 35, 303-307. (d) Harrup, M. K.; Hill, C. L. Inorg.
Chem. 1994, 33, 5448-5455. (e) Harrup, M. K.; Hill, C. L. J. Mol. Catal.
A 1996, 106, 57-66. (c) Gall, R. D.; Hill, C. L.; Walker, J. E. J. Catal.
1996, 159, 473-478.
(17) Recently, there has been a report on the oxidation of sulfides to sulfoxides
catalyzed by polyoxometalate/nitrate catalysts: Okun, N. M.; Anderson,
T. M.; Hardcastle, K. I.; Hill, C. L. Inorg. Chem. 2003, 42, 6610-6612.
(18) Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidations of Organic
Compounds; Academic Press: New York, 1981.
9
J. AM. CHEM. SOC. VOL. 126, NO. 20, 2004 6357