320
R. Velu et al. / Journal of Photochemistry and Photobiology A: Chemistry 217 (2011) 313–320
attributed to the PET between the TU and ADD in ADDTU-GNPs–F−
complex. The variation in the fluorescence lifetime of ADDTU-GNPs
on addition of F−, in acetonitrile, was observed as presented in
Table 1.
[18] T. Gunnlaugsson, H.D.P. Ali, M. Glynn, P.E. Kruger, G.M. Hussey, F.M. Pfeffer,
C.M.G. dos Santos, J. Tierney, Fluorescencent photoinduced electron transfer
(PET) sensors for anions; from design to potential application, J. Fluoresc. 15
(2005) 287–299.
[19] S.S. Sun, J.A. Anspach, A.J. Lees, P.Y. Zavalij, Synthesis and electrochemical,
photophysical and anion binding properties of self-assembly heterometallic
cyclophanes, Organometallics 21 (2002) 673–685.
[20] J.S. Wu, J.H. Zhou, P.F. Wang, X.H. Zhang, S.K. Wu, New fluorescent chemosensor
based on exciplex signaling mechanism, Org. Lett. 7 (2005) 2133–2136.
[21] X. Peng, Y. Wu, J. Fan, M. Tian, K. Han, Colorimetric and ratiometric fluorescence
sensing of fluoride: tuning selectivity in proton transfer, J. Org. Chem. 70 (2005)
10524–10531.
[22] T. Gunnlaugsson, P.E. Kruger, P. Jensen, F.M. Pfeffer, G.M. Hussey, Simple naph-
thalimide based anion sensors: deprotonation induced colour changes and CO2
fixation, Tetrahedron Lett. 44 (2003) 8909–8913.
[23] S. Camiolo, P.A. Gale, M.B. Hursthouse, M.E. Light, A.J. Shi, Solution and solid-
state studies of 3,4-dichloro-2,5-diamidopyrroles: formation of an unusual
anionic narcissistic dimmer, Chem. Commun. (2002) 758–759.
[24] S. Camiolo, P.A. Gale, M.B. Hursthouse, M.E. Light, Nitrophenyl derivatives of
pyrrole 2,5-diamides: structural behaviour, anion binding and colour change
signalled deprotonation, Org. Biomol. Chem. 1 (2003) 741–744.
[25] P.A. Gale, K. Navakhun, S. Camiolo, M.E. Light, M.B. Hursthouse, Anion–anion
assembly: a new class of anionic supramolecular polymer containing 3,4-
dichloro-2,5-diamido-substituted pyrrole anion dimers, J. Am. Chem. Soc. 124
(2002) 11228–11229.
4. Conclusion
In summary, the chemosensors ADDTU and ADDTU-GNPs have
TU receptor site, which play a key role in the selective fluorescence
anion sensing. This inve−stigation represents a ADDTU derivative as
sensor for AcO−, H2PO4 and F−. Hydrogen bonding scaffolds with
TU moiety of ADDTU results in the fluorescence quenching by PET
mechanism. ADDTU-GNPs are highly selective towards F− due to
the steric nature of the cluster.
Acknowledgments
R.V. thanks University of Madras for the University Research Fel-
lowship. NMR and TEM facilities provided by SAIF, IIT Madras are
gratefully acknowledged.
[26] P.A. Gale, Anion receptor chemistry: highlights from 1999, Coord. Chem. Rev.
213 (2001) 79–128.
[27] D.E. Goˇımez, L. Fabbrizzi, M. Licchelli, Why, on interaction of urea-based recep-
tors with fluoride, beautiful colors develop, J. Org. Chem. 70 (2005) 5717–5720.
[28] M. Boiocchi, L. Del Boca, D.E. Gómez, L. Fabbrizzi, M. Licchelli, E. Monzani, Chem.
Eur. J. 11 (2005) 3097–3104.
[29] M. Boiocchi, L. Del Boca, D.E. Gómez, L. Fabbrizzi, M. Licchelli, E. Monzani, Nature
of urea–fluoride interaction: incipient and definitive proton transfer, J. Am.
Chem. Soc. 126 (2004) 16507–16514.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
[30] M.T. Blazquez, F.M. Muniz, S. Saez, L.M. Simon, A. Alonso, C. Raposo, A. Lithgow,
V. Alcazar, J.R. Moran, Acridone heterocycles as fluorescent sensors for anions,
Heterocycles 69 (1) (2006) 73–81.
[31] S.E. García-Garrido, C. Caltagirone, M.E. Light, P.A. Gale, Acridinone-based anion
receptors and sensors, Chem. Commun. (2007) 1450–1452.
[32] P. Shanmugasundaram, P. Murugan, V.T. Ramakrishnan, N. Srividya, P. Rama-
murthy, Synthesis of acridinedione derivatives of laser dyes, Heteroatom Chem.
7 (1996) 17–22.
[33] N. Srividya, P. Ramamurthy, P. Shanmugasundaram, V.T. Ramakrishnan, Syn-
thesis, characterization, and electrochemistry of some acridine-1,8-dione dyes,
J. Org. Chem. 61 (1996) 5083–5089.
[34] C. Selvaraju, P. Ramamurthy, Excited-state behavior and photoionization of 1,8-
acridinrdione dyes in micelles-comparison with NADH oxidation, Chem. Eur. J.
10 (2004) 2253–2262.
[35] V. Thiagarajan, P. Ramamurthy, Fluorescent sensing of anions with acridine-
dione based neutral PET chemosensor, Spectrochim. Acta A 67 (2007) 772–777.
[36] R. Velu, V.T. Ramakrishnan, P. Ramamurthy, Colorimetric and fluorometric
chemosensors for selective signaling towards Ca2+ and Mg2+ by Aza-
crown ether acridinedione functionalized gold nanoparticles, Tetrahedron Lett.
(2010), xxxx–xxxx.
[37] M. Brust, M. Walker, D. Bethell, D.J. Schffrin, R. Whyman, Synthesis of thiol-
derivatised goldnanoparticles in a twophase liquid–liquid system, J. Chem. Soc.
Chem. Commun. (1994) 801–802.
[38] Z. Yan-Li, Y. Chen, M. Wang, Y. Yu Liu, Multi [2] rotaxanes with gold nanopar-
ticles as centers, Org. Lett. 8 (2006) 1267–1270.
[39] R. Velu, P. Ashokkumar, V.T. Ramakrishnan, P. Ramamurthy, Molecular folding
induced nanogold aggregation, Tetrahedron Lett. 51 (2010) 3102–3105.
[40] N. Srividya, P. Ramamurthy, V.T. Ramakrishnan, Photophysical studies of acri-
dine(1,8)dione dyes: a new class of laser dyes, Spectrochim. Acta A 54 (1998)
245–253.
[41] N. Srividya, P. Ramamurthy, V.T. Ramakrishnan, Photooxidation of acridine(1,8)
dione dyes: flash photolysis investigation of the mechanistic details, Phys.
Chem. Chem. Phys. 2 (2000) 5120–5126.
[42] V. Thiagarajan, C. Selvaraju, P. Ramamurthy, Excited state behavior of acridine-
dione dyes in PMMA matrix: in homogeneous broadening and enhancement
of triplet, J. Photochem. Photobiol. A: Chem. 157 (2003) 23–31.
[43] M.J. Hostetler, J.E. Wingate, C.J. Zhong, J.E. Harris, R.W. Vachet, M.R. Clark, J.
David Londono, S.J. Green, J.J. Stokes, G.D. Wignall, G.L. Glish, M.D. Porter, N.D.
Evans, R.W. Murray, Alkanethiolate gold cluster molecules with core diameters
from 1.5 to 5.2 nm: core and monolayer properties as a function of core size,
Langmuir 14 (1998) 17–30.
[44] J.Y. Lee, E.J. Cho, S. Mukamel, K.C. Nam, Efficient fluoride-selective fluorescent
host: experiment and theory, J. Org. Chem. 69 (2004) 943–950.
[45] D.A. Jose, D.K. Kumar, B. Ganguly, Efficient and simple colorimetric fluoride ion
sensor based on receptors having urea and thiourea binding sites, Org. Lett. 6
(2004) 3445–3448.
References
[1] F.P. Schmidtchen, M. Berger, Artificial organic host molecules for anions, Chem.
Rev. 97 (1997) 1609–1643.
[2] P.D. Beer, P.A. Gale, Anion recognition and sensing: the state of the art and
future perspectives, Angew. Chem. Int. Ed. 40 (2001) 486–516.
[3] P.A. Gale (Ed.), Special issue: 35 years of synthetic anion receptor chemistry,
Coord. Chem. Rev. 240 (2003) 1.
[4] C.R. Bondy, S.J. Loeb, Amide based receptors for anions, Coord. Chem. Rev. 240
(2003) 77–99.
[5] K.L. Kirk, Biochemistry of the Halogens and Inorganic Halides, Plenum Press,
New York, 1991, 58.
[6] J.M. Tomich, D. Wallace, K. Henderson, K.E. Mitchell, G. Radke, R. Brandt, C.A.
Ambler, A.J. Scott, J. Grantham, L. Sullivan, T. Iwamoto, Aqueous solubilization
of transmembrance peptide sequences with retention of membrane, Biophys.
J. 74 (1998) 256–267.
[7] S.K. Kim, J.H. Bok, R.A. Bartsch, J.Y. Lee, J.S. Kim, A fluoride-selective PCT
chemosensor based on formation of a static pyrene excimer, Org. Lett. 7 (2005)
4839–4842.
[8] P.A. Gale, Amidopyrroles: from anion receptors to membrane transport agents,
Chem. Commun. (2005) 3761–3772.
[9] S. Camiolo, P.A. Gale, M.B. Hursthouse, M.E. Light, C.N. Warriner, 2,5-
Dimidofuran anion receptors, Tetrahedron Lett. 44 (2003) 1367–1369.
[10] D.H. Lee, K.H. Lee, J.I. Hong, An azophenol-based chromogenic anion sensor,
Org. Lett. 3 (2001) 5–8.
[11] D.H. Lee, H.Y. Lee, K.H. Lee, J.I. Hong, Selective anion sensing based on a dual-
chromophore approach, Chem. Commun. (2001) 1188–1189.
[12] X. Zhang, L. Guo, F.Y. Wu, Y.B. Jiang, Development of fluorescent sensing of
anions under excited-state intermolecular proton transfer signaling mecha-
nism, Org. Lett. 5 (2003) 2667–2670.
[13] K. Chellappan, N.J. Singh, I.C. Hwang, J.W. Lee, K.S. Kim, A. Calix, [4] Imida-
zolium [2] pyridine as an anion receptor, Angew. Chem. Int. Ed. 44 (2005)
2899–2903.
[14] J.L. Sessler, S. Camiolo, P.A. Gale, Pyrrolic and polypyrrolic anion binding agents,
Coord. Chem. Rev. 240 (2003) 17–55.
[15] Z.C. Wen, Y.B. Jiang, Ratiometric dual fluorescencent receptors for anions
under intramolecular charge transfer mechanism, Tetrahedron 60 (2004)
11109–11115.
[16] F.Y. Wu, Z. Li, L. Guo, X. Wang, M.H. Lin, Y.F. Zhao, Y.B. Jiang, A unique NH-
benzamidothiourea based anion sensors substituents effect on anion sensing
of the ICT dual fluorescent N-(p-dimethylaminobenzamido)-Nꢀ-arylthioureas,
Org. Biomol. Chem. 4 (2006) 624–630.
[17] V. Thiagarajan, D. Thirumalai, V.T. Ramakrishnan, P. Ramamurthy, A novel
colorimetric and fluorescent chemosensor for anions involving PET and ICT
pathways, Org. Lett. 7 (2005) 657–660.