Inorganic Chemistry
Article
N.; Bein, T.; Fer
́
ey, G. Inorg. Chem. 2004, 43, 3159−3163. (c) Shi, F.
cible low-energy exchange process/transition with an energy
exchange around 120 °C that could arise from the reorientation
of the thiophene heterocycle. The low crystallinity of this
material did not permit validation of this hypothesis by X-ray
diffraction. After leaving this dehydrated material 5 at room
temperature and ambient humidity for 1 month a polymorph
Mn2(O3P−C4H2S−PO3)·2H2O 4 was isolated, and surpris-
ingly, this material exhibited excellent crystallinity. The main
difference between the structures of 3 and 4 arises from both
the orientation of the thiophene rings (herringbone-type
organization in 4) and the structure of the inorganic layers. It
can be concluded that the thiophene-2,5-diphosphonic acid
moieties engaged in materials 3 and 4 adopt different
orientations (rotation around the P−C bonds) and the
dehydrated state 5, which is likely more flexible than the
hydrated states, allows reorganization of the organic and
inorganic network. Finally, the magnetic behavior of com-
pounds 3 and 4 indicates the antiferromagnetic and weak
ferromagnetic behavior, respectively, for these two polymorphs.
These results are consistent with the structure of these
materials. The dehydrated phase 5 presents paramagnetic
behavior. This work illustrates the use of thiophene-2,5-
diphosphonic acid as a rigid organic building block to design
MOF materials and shows the nonreversibility of the
dehydration/rehydration process since two polymorphs were
characterized. Moreover, this work exemplifies that very soft
experimental conditions permitted the rehydration step.
N.; Trindade, T.; Rocha, J.; Paz, F. A. A. Cryst. Growth Des. 2008, 8,
3917−3920. (d) Rueff, J.-M.; Pillet, S.; Claiser, N.; Bonaventure, G.;
Souhassou, M.; Rabu., P. Eur. J. Inorg. Chem. 2002, 895−900.
́
(6) Bartelet, K.; Marrot, J.; Riou, D.; Ferey, G. Angew. Chem., Int. Ed.
2002, 41, 281−284.
(7) Mao, J. G. Coord. Chem. Rev. 2007, 251, 1493−1520.
(8) (a) Wu, C. D.; Hu, A.; Zhang, L.; Lin, W. J. Am. Chem. Soc. 2005,
127, 8940−8941. (b) Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.;
Young, J.; Kim, K. Nature 2000, 404, 982−986. (c) Forster, P. M.;
Cheetham, A. K. Top. Catal. 2003, 24, 79−86. (d) Dybtsev, D. N.;
Nuzhdin, A. L.; Chun, H.; Bryliakov, K. P.; Talsi, E. P.; Fedin, V. P.;
Kim, K. Angew. Chem., Int. Ed. 2006, 45, 916−920. (e) Sun, C. Y.; Liu,
S. X.; Liang, D. D.; Shao, K. Z.; Ren, Y. H.; Su, Z. M. J. Am. Chem. Soc.
2009, 131, 1883−1888. (f) Cunha-Silva, L.; Lima, S.; Ananias, D.;
Silva, P.; Mafra, L.; Carlos, L. D.; Pillinger, M.; Valente, A. A.; Paz, F.
A. A.; Rocha, J. J. Mater. Chem. 2009, 19, 2618−2632.
(9) (a) Rowsell, J. L. C.; Millard, A. R.; Park, K. S.; Yaghi, O. M. J.
Am. Chem. Soc. 2004, 126, 5666−5667. (b) Morris, R. E.; Wheatley, P.
A. Angew. Chem., Int. Ed. 2008, 47, 4966−4981. (c) Latroche, M.;
Surble, S.; Serre, C.; Mellot-Draznieks, C.; Llewellyn, P. L.; Chang, J.
S.; Jhung, S. H.; Fer
(10) (a) Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas,
F.; Vallet-Regi, M.; Seban, M.; Taulelle, F.; Ferey, G. J. Am. Chem. Soc.
2008, 130, 6774−6780. (b) Horcajada, P.; Serre, C.; Vallet-Regi, M.;
Sebban, M.; Taulelle, F.; Ferey, G. Angew. Chem., Int. Ed. 2006, 45,
5974−5978. (c) Xiao, B.; Wheatley, P. S.; Zhao, X.; Fletcher, A. J.;
Fox, S.; Rossi, A. G.; Megson, I. L.; Bordiga, S.; Regli, L.; Thomas, K.
M.; Morris, R. E. J. Am. Chem. Soc. 2007, 129, 1203−1209.
(d) Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati,
T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.;
́
ey, G. Angew. Chem., Int. Ed. 2006, 45, 8227−8231.
́
́
ASSOCIATED CONTENT
* Supporting Information
■
́
Hwang, Y. K.; Marsaud, V.; Borie, P. N.; Cynober, L.; Gil, S.; Ferey,
S
G.; Couvreur, P.; Gref, R. Nat. Mater. 2010, 9, 172−178. (e) Josse, S.;
Faucheux, C.; Soueidan, A.; Grimandi, G.; Massiot, D.; Alonso, B.;
Janvier, P.; Laïob, S.; Pilet, P.; Gauthier, O.; Daculsi, G.; Guicheux, J.;
Bujoli, B.; Bouler, J. M. Biomaterials 2005, 26, 2073−2080. (f) Berchel,
Crystallographic data (CIFs; CCDC 424643 and 424642 for 3
and 4), positional parameters, and hydrogen-bond lengths and
angle for compounds 3 and 4. This material is available free of
M.; Le Gall, T.; Denis, C.; Le Hir, S.; Quentel, F.; Elleo
Montier, T.; Rueff, J. M.; Salaun, J. Y.; Haelters, J. P.; Lehn, P.; Hix, G.
B.; Jaffres, P. A. New J. Chem. 2011, 35, 1000−1003.
̀
(11) (a) Lin, X.; Telepeni, I.; Blake, A. J.; Dailly, A.; Brown, C. M.;
Simmons, J. M.; Zoppi, M.; Walker, G. S.; Thomas, K. M.; Mays, T. J.;
́
uet, C.;
̈
AUTHOR INFORMATION
Corresponding Author
■
Hubberstey, P.; Champness, N. R.; Schroder, M. J. Am. Chem. Soc.
̈
2009, 131, 2159−2171. (b) Stylianou, K. C.; Heck, R.; Chong, S. Y.;
Bacsa, J.; Jones, J. T. A.; Khimyak, Y. Z.; Bradshaw, D.; Rosseinsky, M.
J. J. Am. Chem. Soc. 2010, 132, 4119−4130. (c) Doonan, C. J.; Morris,
W.; Furukawa, H.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 9492−
9493.
(12) (a) Clearfield, A. Prof. Inorg. Chem. 1998, 47, 371−510.
(b) Clearfield, A. Curr. Opin; Solid State Mater. Sci. 2003, 6, 495−506.
(c) Clearfield, A. J. Alloys Comp. 2006, 418, 128−138. (d) Le Bideau,
J.; Bujoli, B.; Jouanneaux, A.; Payen, C.; Palvadeau, P.; Rouxel, J. Inorg.
Chem. 1993, 32, 4617−4620.
(13) Song, J. J.; Lei, C.; Sun, Y. Q.; Mao, J. G. J. Solid State Chem.
2004, 177, 2557−2564.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the “Services Communs” of the University of Brest
(RMN-RPE and mass spectrometry) and the technical support
of Sylvie Collin of CRISMAT Laboratory for synthesis.
REFERENCES
(1) Fer
(2) Tranchemontagne, D.; Mendoza-Cortes
■
́
ey, G. Dalton Trans. 2009, 4400−4415.
́
, J. L.; O’Keeffe, M.;
(14) (a) Xiao, B.; Byrne, P. J.; Wheatley, P. S.; Wragg, D. S.; Zhao,
X.; Flechter, A. J.; Thomas, K. M.; Peters, L.; Evans, J. S. O.; Warren, J.
E.; Zhou, W.; Morris, R. E. Nat. Chem. 2009, 1, 289−294. (b) Allan, P.
K.; Xiao, B.; Teat, S. J.; Knight, J. W.; Morris, R. E. J. Am. Chem. Soc.
2010, 132, 3605−3611.
Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1257−1283.
(3) (a) Bureekaew, S.; Shimomura, S.; Kitagawa, S. Sci. Technol. Adv.
́
Mater. 2008, 9, 014109. (b) Cheetham, A. K.; Ferey, G.; Loiseau, T.
Angew. Chem., Int. Ed. 1999, 38, 3268−3292.
(4) (a) Alsobrook, A. N.; Zhan, W.; Albrecht-Schmitt, T. E. Inorg.
Chem. 2008, 47, 5177−5183. (b) Riou-Cavallec, M.; Sanselme, M.;
(15) Hix, G. B.; Caignaert, V.; Rueff, J. M.; Le Pluart, L.; Warren, J.
̀
E.; Jaffres, P. A. Cryst. Growth Des. 2007, 7, 208−211.
Guillou, N.; Fer
F.; Fer
T.; Stock, N. Inorg. Chem. 2005, 44, 5882−5889. (e) Turner, A.;
Jaffres, P. A.; MacLean, E.; Villemin, D.; McKee, V.; Hix, G. B. Dalton
́
ey, G. Inorg. Chem. 2001, 40, 723−725. (c) Serpaggi,
(16) (a) Hix, G. B.; Turner, A.; Kariuki, B. M.; Tremayne, M.;
MacLean, E. J. J. Mater. Chem. 2002, 12, 3220−3227. (b) Maeda, K.
Microporous, Mesoporous Mater. 2004, 73, 47−55.
́
ey, G. Inorg. Chem. 1999, 38, 4741−4744. (d) Bauer, S.; Bein,
̀
(17) Rueff, J. M.; Perez, O.; LeClaire, A.; Couthon-Gourves
Jaffres, P. A. Eur. J. Inorg. Chem. 2009, 4870−4876.
(18) Rueff, J. M.; Barrier, N.; Boudin, S.; Dorcet, V.; Caignaert, V;
Boullay, P.; Hix, G. B.; Jaffres, P. A. Dalton Trans. 2009, 10614−10620.
̀
, H.;
Trans. 2003, 1314−1319. (f) Rueff, J. M.; Masciocchi, N.; Rabu, P.;
Sironi, A.; Skoulios., A. Chem.Eur. J. 2002, 8, 1813−1820.
́
(5) (a) Devic, T.; David, O.; Valls, M.; Marrot, J.; Couty, F.; Ferey,
̀
G. J. Am. Chem. Soc. 2007, 129, 12614−12615. (b) Serre, C.; Stock,
̀
J
dx.doi.org/10.1021/ic301187y | Inorg. Chem. XXXX, XXX, XXX−XXX