ORGANIC
LETTERS
2012
Vol. 14, No. 7
1884–1887
Double- and Triple-Cobalt Catalysis
in Multicomponent Reactions
Florian Erver and Gerhard Hilt*
€
Fachbereich Chemie, Philipps-Universitat Marburg, Hans-Meerwein-Str., 35043
Marburg, Germany
Received February 28, 2012
ABSTRACT
The combination of different types of cobalt-catalyzed transformations in one-pot procedures is described. One of the key building blocks, a boron-
functionalized isoprene derivative (boroprene), led to the realization of four-component reaction sequences comprising the cobalt-catalyzed
DielsꢀAlder and a 1,4-hydrovinylation reaction. Eventually, a reaction sequence including a cobalt-catalyzed DielsꢀAlder reaction, a cobalt-
catalyzed 1,4-hydrovinylation, an allylboration, and a cobalt-catalyzed Alder-ene reaction led to a five-component one-pot reaction sequence in
which five carbonꢀcarbon bonds were formed in excellent regio- and diastereoselectivity to generate complex products in good overall yields.
The generation of increasingly complex molecules in
atom- and step-economic one-pot multicomponent reac-
tions starting from readily available starting materials is
attracting many chemists. Moreover, it is of great interest
when one catalyst is able to initiate two or more different
types of reactions in a multicomponent transformation
(double catalysis).1,2
The application of a wide variety of cobalt-catalyzed
transformations3 led us to consider such reactions in multi-
component sequences. Inthis respect, we recently described
the application of the boron-functionalized isoprene deri-
vative 14 in a cobalt-catalyzed 1,4-hydrovinylation5/allyl-
boration/1,4-hydrovinylation reaction sequence for the
generation of 2. This sequence represents a benchmark
(4) Erver, F.; Hilt, G. Org. Lett. 2011, 13, 5700.
(1) For selected recent reviews, see: (a) Zhou, J. Chem.;Asian J.
2010, 5, 422. (b) Fogg, D. E.; dos Santos, E. N. Coord. Chem. Rev. 2004,
248, 2365. (c) Wasilke, J.-C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C.
Chem. Rev. 2005, 105, 1001. (d) Mayer, S. F.; Kroutil, W.; Faber, K.
Chem. Soc. Rev. 2001, 30, 332.
ꢁ
(5) (a) Arndt, M.; Dindaroglu, M.; Schmalz, H.-G.; Hilt, G. Org.
Lett. 2011, 13, 6236. (b) Hilt, G.; Roesner, S. Synthesis 2011, 662.
(c) Arndt, M.; Reinhold, A.; Hilt, G. J. Org. Chem. 2010, 75, 5203.
(d) Hilt, G.; Arndt, M.; Weske, D. F. Synthesis 2010, 1321. (e) Kersten,
€
L.; Roesner, S.; Hilt, G. Org. Lett. 2010, 12, 4920. (f) Hilt, G.; Luers, S.;
(2) For recent reviews on transition-metal- and organo-catalyzed
ꢀ
€
Schmidt, F. Synthesis 2004, 634. (g) Hilt, G.; Luers, S. Synthesis 2002,
multicomponent reactions, see: (a) Barluenga, J.; Fernandez-Rodrıguez,
M. A.; Aguilar, E. J. Organomet. Chem. 2005, 690, 539. (b) Enders, D.;
Narine, A. A. J. Org. Chem. 2008, 73, 7857. For an example of a multi-
€
609. (h) Hilt, G.; du Mesnil, F.-X.; Luers, S. Angew. Chem., Int. Ed. 2001,
40, 387. For 1,2-hydrovinylation reactions, see: (i) Sharma, R. K.;
RajanBabu, T. V. J. Am. Chem. Soc. 2010, 132, 3295. (j) Saha, B.;
Smith, C. R.; RajanBabu, T. V. J. Am. Chem. Soc. 2008, 130, 9000.
(k) Shirakura, M.; Suginome, M. J. Am. Chem. Soc. 2008, 130, 5410.
(l) Saha, B.; RajanBabu, T. V. J. Org. Chem. 2007, 72, 2357.
€
component reaction initiated by cobalt catalysis, see: (c) Hilt, G.; Luers, S.;
Smolko, K. I. Org. Lett. 2005, 7, 251.
(3) For recent reviews, see: (a) Hess, W.; Treutwein, J.; Hilt, G.
Synthesis 2008, 3537. (b) Omae, I. Appl. Organomet. Chem. 2007, 21,
318. (c) Laschat, S.; Becheanu, A.; Bell, T.; Baro, A. Synlett 2005, 2547.
ꢂ
(m) Lassauque, N.; Francio, G.; Leitner, W. Adv. Synth. Catal. 2009,
ꢂ
351, 3133. (n) Lassauque, N.; Francio, G.; Leitner, W. Eur. J. Org.
€
ꢀ
(d) Varela, J. A.; Saa, C. Chem. Rev. 2003, 103, 3787. (e) Malacria, M.;
Chem. 2009, 3199. (o) Grutters, M. M. P.; Muller, C.; Vogt, D. J. Am.
Aubert, C.; Renaud, J. L. In Science of Synthesis: Houben-Weyl Methods
of Molecular Transformations; Lautens, M., Trost, B. M., Eds.; Thieme:
Stuttgart, 2001; Vol. 1, p 439. (f) Welker, M. E. Curr. Org. Chem. 2001, 5,
785. (g) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901. (h) Ojima,
I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96
635. (i) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49.
(j) Jeganmohan, M.; Cheng, C.-H. Chem.;Eur. J. 2008, 14, 10876.
Chem. Soc. 2006, 128, 7414. See also: (p) Wei, C.-H.; Mannathan, S.;
Cheng, C.-H. J. Am. Chem. Soc. 2011, 133, 6942. (q) Chang, H.-T.;
Jayanth, T. T.; Cheng, C.-H. J. Am. Chem. Soc. 2007, 129, 4166.
(r) Chang, H.-T.; Jayanth, T. T.; Wang, C.-C.; Cheng, C.-H. J. Am.
Chem. Soc. 2007, 129, 12032. (s) Mannathan, S.; Cheng, C.-H. Chem.
Commun. 2010, 1923. (t) Wang, C.-C.; Lin, T.-S.; Cheng, C.-H. J. Am.
Chem. Soc. 2002, 124, 9696.
r
10.1021/ol300504f
Published on Web 03/20/2012
2012 American Chemical Society