Organic Letters
Letter
(9) Paul, R.; Greenberg, M. M. J. Am. Chem. Soc. 2015, 137, 596.
(10) San Pedro, J. M. N.; Greenberg, M. M. J. Am. Chem. Soc. 2014,
136, 3928.
(11) Cadet, J.; Douki, T.; Ravanat, J.-L. Acc. Chem. Res. 2008, 41,
1075.
(12) Adhikary, A.; Becker, D.; Sevilla, M. D. In Applications of EPR in
Radiation Research; Lund, A., Shiotani, M., Eds.; Springer International
Publishing: Heidelberg, 2014; p 299−352.
(13) Yoshioka, Y.; Kitagawa, Y.; Takano, Y.; Yamaguchi, K.;
Nakamura, T.; Saito, I. J. Am. Chem. Soc. 1999, 121, 8712.
(14) Kuttappan-Nair, V.; Samson-Thibault, F.; Wagner, J. R. Chem.
Res. Toxicol. 2010, 23, 48.
duplex containing 1 (14a, 29.2 °C) was decreased significantly
compared to an otherwise identical one containing dA (14b,
49.6 °C) in place of 1. This does not detract from the utility of
1 as a tool for producing dA• in DNA since the lifetime of the
radical (4.0
1.0 ms) is long compared to conformational
changes of the helix.44
In summary, in response to a dearth of methods for
generating aminyl radicals photochemically, we demonstrate
that hydrazines are suitable photochemical precursors for π-
aminyl purine radicals (dA•, dG(N2−H)•). The precursors are
also compatible with solid-phase oligonucleotide synthesis
conditions, indicating that they will be useful for elucidating the
reactivity of these important reactive intermediates within
nucleic acids. Furthermore, the redox potentials of 1 and 2 are
found to be far lower than those of 8-oxo-dGuo and 7-
deazadGuo (Figure 2, Figures S4,5), which are used extensively
as DNA−hole transfer probes.45 Consequently, 1 and 2 may be
much better hole traps than either 8-oxodGuo or 7-deazadGuo
and would be excellent probes for the investigation of hole
transfer in DNA.
(15) Zheng, L.; Griesser, M.; Pratt, D. A.; Greenberg, M. M. J. Org.
Chem. 2017, 82, 3571.
(16) Kaloudis, P.; Paris, C.; Vrantza, D.; Encinas, S.; Perez-Ruiz, R.;
Miranda, M. A.; Gimisis, T. Org. Biomol. Chem. 2009, 7, 4965.
(17) Vrantza, D.; Kaloudis, P.; Leondiadis, L.; Gimisis, T.;
Vougioukalakis, G. C.; Orfanopoulos, M.; Gasparutto, D.; Cadet, J.;
Encinas, S.; Paris, C.; Miranda, M. A. Helv. Chim. Acta 2006, 89, 2371.
(18) Hirata, Y.; Niga, Y.; Ohta, M.; Takizawa, M.; Okada, T. Res.
Chem. Intermed. 1995, 21, 823.
(19) Lenderink, E.; Duppen, K.; Wiersma, D. A. Chem. Phys. Lett.
1992, 194, 403.
(20) Hyde, M. G.; Reid, G. D.; Beddard, G. S. Chem. Phys. Lett. 1992,
190, 130.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(21) Neugebauer, F. A.; Bamberger, S. Chem. Ber. 1974, 107, 2362.
(22) Schlosser, K.; Steenken, S. J. Am. Chem. Soc. 1983, 105, 1504.
(23) Pratt, D. A.; DiLabio, G. A.; Valgimigli, L.; Pedulli, G. F.; Ingold,
K. U. J. Am. Chem. Soc. 2002, 124, 11085.
(24) Ingold, K. U.; Pratt, D. A. Chem. Rev. 2014, 114, 9022.
(25) Kolarski, D.; Szymanski, W.; Feringa, B. L. Org. Lett. 2017, 19,
5090.
All experimental details and spectroscopic data for all
(26) Too, K.; Brown, D. M.; Bongard, E.; Yardley, V.; Vivas, L.;
Loakes, D. Bioorg. Med. Chem. 2007, 15, 5551.
AUTHOR INFORMATION
Corresponding Author
■
(27) Bae, S.; Lakshman, M. K. J. Am. Chem. Soc. 2007, 129, 782.
(28) Nair, V.; Richardson, S. G. J. Org. Chem. 1980, 45, 3969.
(29) Veliz, E. A.; Beal, P. A. J. Org. Chem. 2001, 66, 8592.
(30) Lakshman, M. K.; Ngassa, F. N.; Keeler, J. C.; Dinh, Y. Q. V.;
Hilmer, J. H.; Russon, L. M. Org. Lett. 2000, 2, 927.
(31) Lakshman, M. K.; Hilmer, J. H.; Martin, J. Q.; Keeler, J. C.;
Dinh, Y. Q. V.; Ngassa, F. N.; Russon, L. M. J. Am. Chem. Soc. 2001,
123, 7779.
(32) Lakshman, M. K.; Keeler, J. C.; Hilmer, J. H.; Martin, J. Q. J.
Am. Chem. Soc. 1999, 121, 6090.
(33) Buchwald, S. L.; Wagaw, S.; Geis, O. WO9943643A2 1999.
(34) Szombati, Z.; Baerns, S.; Marx, A.; Meier, C. ChemBioChem
2012, 13, 700.
516-7044.
ORCID
Notes
The authors declare no competing financial interest.
(35) Huang, X.; Yu, P.; LeProust, E.; Gao, X. Nucleic Acids Res. 1997,
25, 4758.
(36) Steenken, S.; Jovanovic, S. V.; Bietti, M.; Bernhard, K. J. Am.
Chem. Soc. 2000, 122, 2373.
(37) Steenken, S.; Jovanovic, S. V. J. Am. Chem. Soc. 1997, 119, 617.
(38) Thapa, B.; Schlegel, H. B. J. Phys. Chem. A 2015, 119, 5134.
(39) Shukla, L. I.; Adhikary, A.; Pazdro, R.; Becker, D.; Sevilla, M. D.
Nucleic Acids Res. 2004, 32, 6565.
(40) Adhikary, A.; Kumar, A.; Munafo, S. A.; Khanduri, D.; Sevilla,
M. D. Phys. Chem. Chem. Phys. 2010, 12, 5353.
ACKNOWLEDGMENTS
■
We are grateful for generous financial support from the
National Institute of General Medical Science (GM-054996) to
M.M.G. A.A. and M.D.S. acknowledge financial support from
the National Cancer Institute (CA-045424) and the Oakland
University Research Excellence Funds (CBR). L.Z. thanks
Johns Hopkins University for the Glen E. Meyer ’39
Fellowship.
(41) Adhikary, A.; Kumar, A.; Becker, D.; Sevilla, M. D. J. Phys. Chem.
B 2006, 110, 24171.
(42) Rokhlenko, Y.; Cadet, J.; Geacintov, N. E.; Shafirovich, V. J. Am.
Chem. Soc. 2014, 136, 5956.
(43) Harwood, E. A.; Hopkins, P. B.; Sigurdsson, S. T. J. Org. Chem.
2000, 65, 2959.
REFERENCES
■
(1) Pitie,
́
M.; Pratviel, G. Chem. Rev. 2010, 110, 1018.
(2) Gates, K. S. Chem. Res. Toxicol. 2009, 22, 1747.
(3) Kennedy, D. R.; Ju, J.; Shen, B.; Beerman, T. A. Proc. Natl. Acad.
Sci. U. S. A. 2007, 104, 17632.
(4) Roy, B.; Hecht, S. M. J. Am. Chem. Soc. 2014, 136, 4382.
(5) Chen, J.; Stubbe, J. Nat. Rev. Cancer 2005, 5, 102.
(6) Dizdaroglu, M.; Jaruga, P. Free Radical Res. 2012, 46, 382.
(7) Greenberg, M. M. Adv. Phys. Org. Chem. 2016, 50, 119.
(8) Giese, B.; Beyrich-Graf, X.; Erdmann, P.; Giraud, L.;
(44) Banyasz, A.; Ketola, T.-M.; Munoz-Losa, A.; Rishi, S.; Adhikary,
̃
A.; Sevilla, M. D.; Martinez-Fernandez, L.; Improta, R.; Markovitsi, D.
J. Phys. Chem. Lett. 2016, 7, 3949.
(45) Genereux, J. C.; Barton, J. K. Chem. Rev. 2010, 110, 1642.
Imwinkelried, P.; Muller, S. N.; Schwitter, U. J. Am. Chem. Soc.
̈
1995, 117, 6146.
D
Org. Lett. XXXX, XXX, XXX−XXX