2008, 37, 1423–1431; (c) R. A. Scheck, M. T. Dedeo,
A. T. Iavarone and M. B. Francis, J. Am. Chem. Soc., 2008, 130,
11762–11770; (d) Y. Zeng, T. N. C. Ramya, A. Dirksen,
P. E. Dawson and J. C. Paulson, Nat. Methods, 2009, 6,
207–209; (e) L. A. Canalle, D. W. P. M. Lowik and J. C. M. van
¨
Hest, Chem. Soc. Rev., 2010, 39, 329–353; (f) J. Alam, T. H. Keller
and T. P. Loh, J. Am. Chem. Soc., 2010, 132, 9546–9548;
(g) J. C. Jewett, E. M. Sletten and C. R. Bertozzi, J. Am. Chem.
Soc., 2010, 132, 3688–3690; (h) J. Rayo, N. Amara, P. Krief and
M. M. Meijler, J. Am. Chem. Soc., 2011, 133, 7469–7475;
(i) Q. Zhang, J. Sun, Y. Zhu, F. Zhang and B. Yu, Angew. Chem.,
Int. Ed., 2011, 50, 4933–4936; (j) E. M. Sletten and C. R. Bertozzi,
Acc. Chem. Res., 2011, 44, 666–676; (k) J. M. Chalker, G. J. L.
Bernardes and B. G. Davis, Acc. Chem. Res., 2011, 44, 730–741;
(l) L. S. Witus and M. B. Francis, Acc. Chem. Res., 2011, 44,
774–783.
Scheme 6 Selective modification of cysteine-containing peptide
STSSSCNLSK 12 with b-hydroxyl-a-methylene-carbonyl-bearing MBH
adducts 7a–7b.
3 (a) S. J. Danishefsky and J. R. Allen, Angew. Chem., Int. Ed., 2000,
39, 836–863; (b) D. P. Galonic and D. Y. Gin, Nature, 2007, 446,
´
1000–1007; (c) S. I. van Kasteren, H. B. Kramer, H. H. Jensen,
S. J. Campbell, J. Kirkpatrick, N. J. Oldham, D. C. Anthony and
B. G. Davis, Nature, 2007, 446, 1105–1109.
4 (a) R. J. Payne and C. H. Wong, Chem. Commun., 2010, 46, 21–43;
(b) C. Y. Wu and C. H. Wong, Chem. Commun., 2011, 47,
6201–6207.
5 (a) A. Dirksen, T. M. Hackeng and P. E. Dawson, Angew. Chem.,
Int. Ed., 2006, 45, 7581–7584; (b) I. S. Carrico, B. L. Carlson and
C. R. Bertozzi, Nat. Chem. Biol., 2007, 3, 321–322.
6 (a) J. Kalia and R. T. Raines, Angew. Chem., Int. Ed., 2008, 47,
7523–7526; (b) J. Kalia and R. T. Raines, Curr. Org. Chem., 2010,
14, 138–147.
Scheme 7 Selective modification of free cysteine-containing protein
BSA with fluorescent dansyl-linked MBH adduct 14.
7 (a) P. Kele, G. Mezo, D. Achatz and O. S. Wolfbeis, Angew.
¨
Chem., Int. Ed., 2009, 48, 344–347; (b) J. Morales-Sanfrutos,
F. J. Lopez-Jaramillo, F. Hernandez-Mateo and F. Santoyo-
Gonzalez, J. Org. Chem., 2010, 75, 4039–4047; (c) C. S. Tsai,
P. Y. Liu, H. Y. Yen, T. L. Hsu and C. H. Wong, Chem. Commun.,
2010, 46, 5575–5577; (d) M. E. B. Smith, F. F. Schumacher,
C. P. Ryan, L. M. Tedaldi, D. Papaioannou, G. Waksman,
S. Caddick and J. R. Baker, J. Am. Chem. Soc., 2010, 132,
1960–1965; (e) B. C. Sanders, F. Friscourt, P. A. Ledin,
N. E. Mbua, S. Arumugam, J. Guo, T. J. Boltje, V. V. Popik
and G.-J. Boons, J. Am. Chem. Soc., 2011, 133, 949–957;
(f) M. Galibert, O. Renaudet, P. Dumy and D. Boturyn, Angew.
Chem., Int. Ed., 2011, 50, 1901–1904; (g) C. P. Ryan, M. E. B.
Smith, F. F. Schumacher, D. Grohmann, D. Papaioannou,
G. Waksman, F. Werner, J. R. Baker and S. Caddick, Chem.
Commun., 2011, 47, 5452–5454; (h) M. L. Conte, S. Staderini,
A. Marra, M. Sanchez-Navarro, B. G. Davis and A. Dondoni,
Chem. Commun., 2011, 47, 11086–11088.
Fig. 2 SDS-PAGE of BSA, 14-modified BSA and lysozyme: fluores-
cence visualization (left) and Coomassie staining (right).
The peaks at 66 547 Da (BSA) and 67 140 Da (14-modified BSA)
revealed incorporation of one molecule of 14 per BSA.
In conclusion, we have developed an efficient MBH-based
aldehyde bioconjugation reaction for multifunctional modifica-
tion of oligosaccharides, peptides and proteins with fluorescent
probes/biotin tags. The excellent compatibility of the MBH-based
bioconjugation reaction with thiol-based bioconjugation and
click reaction allows modular assembly of multifunctional bio-
conjugates that would have widespread applications.
8 (a) W.-K. Chan, C.-M. Ho, M.-K. Wong and C.-M. Che, J. Am.
Chem. Soc., 2006, 128, 14796–14797; (b) H.-Y. Shiu, T.-C. Chan,
C.-M. Ho, Y. Liu, M.-K. Wong and C.-M. Che, Chem.–Eur. J.,
2009, 15, 3839–3850; (c) K. K.-Y. Kung, G.-L. Li, L. Zou, H.-C.
Chong, Y.-C. Leung, K.-H. Wong, V. K.-Y. Lo, C.-M. Che and
M.-K. Wong, Org. Biomol. Chem., 2012, 10, 925–930.
We thank the financial support from Hong Kong Research
Grants Council (PolyU 7052/07P) and The Hong Kong
Polytechnic University (PolyU Departmental General Research
Funds, Competitive Research Grants for Newly Recruited
Junior Academic Staff and SEG PolyU01).
9 (a) D. Basavaiah, K. V. Rao and R. J. Reddy, Chem. Soc. Rev.,
2007, 36, 1581–1588; (b) D. Basavaiah, B. S. Reddy and
S. S. Badsara, Chem. Rev., 2010, 110, 5447–5674.
10 (a) C. Yu, B. Liu and L. Hu, J. Org. Chem., 2001, 66, 5413–5418;
(b) J. Cai, Z. Zhou, G. Zhao and C. Tang, Org. Lett., 2002, 4,
4723–4725; (c) S. Luo, P. G. Wang and J. P. Cheng, J. Org. Chem.,
2004, 69, 555–558.
11 For the determination of aldehyde conversion by LC-MS analysis,
Notes and references
see ESIw.
1 G. T. Hermanson, Bioconjugate Techniques, Academic Press,
Amsterdam, 2nd edn, 2008.
2 (a) C. P. R. Hackenberger and D. Schwarzer, Angew. Chem.,
Int. Ed., 2008, 47, 10030–10074; (b) I. S. Carrico, Chem. Soc. Rev.,
12 The result is consistent with previous work by Krishna et al. using
protected sugar-derived aldehydes as chiral electrophiles in
MBH reaction, see: A. Manjuvani, V. Kannan and P. R. Krishna,
Tetrahedron: Asymmetry, 2005, 16, 2691–2703.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 3527–3529 3529