R. Lazzaroni et al. / Tetrahedron: Asymmetry 16 (2005) 3661–3666
3665
J = 13.9, 10.0, 2.5 Hz, H-10b), 2.63–2.70 (m, 1H, H-20),
3.14–3.29 and 3.52–3.68 (m, 7H, H-1, H-2, H-3, H-4,
H-5, H-6), 4.35–4.90 (m, 8H, PhCH2O). 13C NMR
(100.57 MHz, CDCl3) d 18.4 (q, C-100), 36.0 (t, C-10),
36.3 (d, C-20), 69.3, 73.8, 75.2, 75.5, 75.9 (5t, 4PhCH2O,
C-6), 78.7, 79.1, 79.3, 82.6, 87.5 (5 d, C-1, C-2, C-3, C-4,
C-5), 182.1 (s, C@O).
(0.031 g, 94% yield). 1H NMR (400 MHz, CDCl3) d
1.15 (d, 3H, J = 6.8 Hz, H-100), 1.89 (ddd, 1H,
J = 15.0, 12.3, 4.3 Hz, H-10a), 1.97 (ddd, 1H, J = 15.0,
11.0, 4.5 Hz, H-10b), 2.54–2.60 (m, 1H, H-20), 3.47
(ddd, 1H, J = 11.0, 5.4, 4.3 Hz, H-1), 3.53 (dd, 1H,
J = 9.5, 6.2 Hz, H-6a), 3.60–3.84 (m, 8H, H-2, H-3, H-
4, H-5, H-6b, COOCH3), 4.35 and 4.39 (ABq, 2H,
J = 12.0 Hz, PhCH2O), 4.47 and 4.83 (ABq, 2H,
J = 10.8 Hz, PhCH2O), 4.58 and 4.69 (ABq, 2H, J =
11.5 Hz, PhCH2O), 4.78 and 4.96 (ABq, 2H, J =
11.0 Hz, PhCH2O), 5.40 (d, 1H, J = 6.5 Hz, H-40),
7.08 (d, 1H, J = 6.5 Hz, NH). 13C NMR (100.57 MHz,
CDCl3) d 18.3 (q, C-100), 30.1 (t, C-10), 35.8 (d, C-20),
52.9 (d, C-40), 57.3 (q, COOCH3), 70.1, 72.7, 73.6,
75.4, 75.8 (5t, 4PhCH2O, C-6), 70.8, 71.6, 78.7, 80.1,
82.6 (5 d, C-1, C-2, C-3, C-4, C-5), 171.4, 175.5 (2s,
C@O).
4.4. Preparation of PGME amides: general procedure
Acids 4a and 4b (1 equiv) and phenylglycine methyl
esters (1.2 equiv) were dissolved in dryDMF (0.3 mL),
after which PyBroP (1.5 equiv) and DIPEA (4.5 equiv)
were added sequentially. After 1 h, the reaction mixture
was concentrated to dryness. Purification by flash chro-
matography(SiO , light petroleum/EtOAc = 7/3) affor-
2
ded amides 5 and 6.
4.4.1. Characterization of 5a. Compound 4a
(0.052 mmol) was treated with (R)-PGME following
the general procedure to afford 5a as white solid
(0.022 g, 82% yield). 1H NMR (400 MHz, CDCl3) d
1.21 (d, 3H, J = 6.8 Hz, H-100), 1.81 (ddd, 1H,
J = 14.9, 12.0, 3.8 Hz, H-10a), 1.93 (ddd, 1H, J = 14.9,
11.5, 3.9 Hz, H-10b), 2.54–2.59 (m, 1H, H-20), 3.84 (t,
1H, J = 9.5 Hz, H-4), 3.50 (dd, 1H, J = 9.9, 6.0 Hz,
H-6a), 3.57–3.78 (m, 7H, H-2, H-3, H-5, H-6b, COOCH3),
3.87 (ddd, 1H, J = 11.5, 5.3, 3.9 Hz, H-1), 4.37 and 4.44
(ABq, 2H, J = 11.4 Hz, PhCH2O), 4.49 and 4.55 (ABq,
2H, J = 12.4 Hz, PhCH2O), 4.73 and 4.89 (ABq, 2H,
J = 11.0 Hz, PhCH2O), 4.77 and 4.80 (ABq, 2H,
J = 10.8 Hz, PhCH2O), 5.59 (d, 1H, J = 7.2 Hz, H-40),
6.98 (d, 1H, J = 7.2 Hz, NH). 13C NMR (100.57 MHz,
CDCl3) d 18.7 (q, C-100), 30.1 (t, C-10), 36.4 (d, C-20),
53.0 (d, C-40), 56.8 (q, COOCH3), 69.8, 72.6, 73.7,
75.4, 75.8 (5t, 4PhCH2O, C-6), 71.0, 71.6, 78.6, 79.9,
82.5 (5 d, C-1, C-2, C-3, C-4, C-5), 171.3, 175.3 (2s,
C@O).
4.4.4. Characterization of 6b. Compound 4b
(0.049 mmol) was treated with (S)-PGME following
the general procedure, affording 6b as white solid
(0.037 g, quantitative yield). 1H NMR (400 MHz,
CDCl3) d 1.07 (d, 3H, J = 6.8 Hz, H-100), 1.27 (ddd,
1H, J = 14.0, 11.3, 4.2 Hz, H-10a), 1.96 (ddd, 1H,
J = 14.0, 10.1, 3.0 Hz, H-10b), 2.56–2.62 (m, 1H, H-20),
2.67–2.71 (m, 1H, H-5), 2.87 (ddd, 1H, J = 11.3, 9.0,
3.0 Hz, H-1), 3.05 (t, 1H, J = 9.0 Hz, H-2), 3.20–3.38
(m, 4H, H-3, H-4, H-6) 3.63 (s, 3H, COOCH3), 4.34–
4.82 (m, 8H, PhCH2O), 5.59 (d, 1H, J = 6.5 Hz, H-40),
6.71 (d, 1H, J = 6.5 Hz, NH). 13C NMR (400 MHz,
CDCl3) d 18.3 (q, C-100), 30.1 (t, C-10), 36.9 (d, C-20),
52.9 (d, C-40), 56.4 (q, COOCH3), 69.3, 73.6, 74.9,
75.3, 75.8 (5t, 4PhCH2O, C-6), 76.5, 78.3, 78.9, 83.1,
87.1 (5 d, C-1, C-2, C-3, C-4, C-5), 171.5, 175.2 (2s,
C@O).
References
1. Van Leeuwen, P. W. N. M.; Claver, C. Rhodium Catalyzed
Hydroformylation; Kluwer Academic Publishers, 2000.
2. Agbossou, F.; Carpentier, J. F.; Mortreux, A. Chem. Rev.
1995, 95, 2485.
3. Breit, B. Acc. Chem. Res. 2003, 36, 264.
4. Siegel, H.; Himmele, W. Angew. Chem., Int. Ed. 1980, 19,
178.
4.4.2. Characterization of 5b. Compound 4b
(0.031 mmol) was treated with (R)-PGME following
the general procedure, to afford 5b as a white solid
(0.024 g, quantitative yield). 1H NMR (400 MHz,
CDCl3) d 1.03 (d, 3H, J = 6.8 Hz, H-100), 1.34 (ddd,
1H, J = 14.7, 12.0, 3.8 Hz, H-10a), 2.02 (ddd, 1H,
J = 14.7, 12.7, 3.0 Hz, H-10b), 2.59–2.64 (m, 1H, H-20),
3.15 (t, 1H, J = 9.1 Hz, H-2), 3.35 (t, 1H, J = 9.1 Hz,
H-4), 3.40 (dd, 1H, J = 10.0, 4.3 Hz, H-6a), 3.47 (ddd,
1H, J = 12.0, 9.1, 3.0 Hz, H-1), 3.57 (dd, 1H, J = 10.0,
1.7 Hz, H-6b), 3.63 (s, 3H, COOCH3), 3.67–3.73 (m,
2H, H-5, H-3), 4.21 (br s, 2H, PhCH2O), 4.42 and
4.74 (ABq, 2H, J = 10.8 Hz, PhCH2O), 4.58 and 4.75
(ABq, 2H, J = 10.8 Hz, PhCH2O), 4.82 (br s, 2H,
PhCH2O), 5.51 (d, 1H, J = 7.8 Hz, H-40), 6.77 (d, 1H,
J = 7.8 Hz, NH). 13C NMR (100.57 MHz, CDCl3) d
18.1 (q, C-100), 30.1 (t, C-10), 36.5 (d, C-20), 52.9 (d, C-
40), 56.6 (q, COOCH3), 69.8, 73.3, 75.3, 75.4, 75.9 (5t,
4PhCH2O, C-6), 75.8, 77.9, 79.4, 83.6, 87.3 (5 d, C-1,
C-2, C-3, C-4, C-5), 171.5, 175.5 (2s, C@O).
5. Breit, B. Angew. Chem., Int. Ed. 1996, 35, 2835.
`
6. (a) Fernandez, E.; Ruitz, A.; Claver, C.; Castillon, S.;
Polo, A.; Piniella, J. F.; Alvarez-Larena, A. Organomet-
allics 1998, 17, 2857; (b) Takahashi, T.; Ebata, S.;
Yamada, H. Synlett 1998, 381.
7. Lewis, D. M.; Kun Cha, J.; Kishi, Y. J. Am. Chem. Soc.
1982, 104, 4976.
8. Cupp, T. L.; Wise, D. S.; Towsend, L. B. J. Org. Chem.
1982, 47, 5115.
9. Cipolla, L.; La Ferla, B.; Lay, L.; Peri, F.; Nicotra, F.
Tetrahedron: Asymmetry 2000, 11, 295.
10. La Ferla, B.; Cipolla, L.; Peri, F.; Nicotra, F. J.
Carbohydr. Chem. 2001, 7&8, 667.
11. Lazzaroni, R.; Pucci, S.; Bertozzi, S.; Pini, D. J. Organo-
met. Chem. 1983, C56, 247.
12. Lazzaroni, R.; Pertici, P.; Bertozzi, S.; Fabrizi, G. J. Mol.
Catal. 1990, 58, 75.
4.4.3. Characterization of 6a. Compound 4a
(0.044 mmol) was treated with (S)-PGME following
the general procedure, affording 6a as white solid
13. (a) Lazzaroni, R.; Uccello-Barretta, G.; Benetti, M.
Organometallics 1989, 8, 2323; (b) Alagona, G.; Ghio,
C.; Lazzaroni, R.; Settambolo, R. Organomettalics 2001,