7238
J . Org. Chem. 1996, 61, 7238-7239
Sch em e 1
Tow a r d th e Develop m en t of a Gen er a l
Ch ir a l Au xilia r y. A Rem a r k a ble, High ly
Dia ster eoselective, Au xilia r y-Med ia ted
Su bstitu tion : Ap p lica tion to a n
En a n tioselective Syn th esis of th e
Cycloh exen e Su bu n it of (+)-Tetr on olid e
Robert K. Boeckman, J r.,* and Stephen T. Wrobleski
Sch em e 2
Department of Chemistry, University of Rochester,
Rochester, New York 14627-0216
Received August 15, 1996
The development of methods allowing the diastereo-
facially selective construction of carbon-carbon bonds is
one of the important thrusts of modern synthetic organic
chemistry.1 In our studies, several camphor-derived lac-
tams have been found useful as auxiliaries for Diels-
Alder, [2 + 2] cycloaddition, alkylation, and aldol con-
densation reactions.2 Ongoing efforts directed toward the
enantioselective construction of (+)-tetronolide (1),3-6 the
aglycon of the stereochemically complex natural antitu-
mor tetrocarcins required methodology for the construc-
tion of enantiomerically pure hydroxy ester 2. Prior stud-
ies from our laboratories have realized significant progress
toward 1, including the development of a sequence that
afforded (()-2.7-9 We hoped to take advantage of the
Sch em e 3a
a
Key: (a) n-BuLi (1.1 equiv), KO-t-Bu (1.1 equiv), THF, -78 °C,
then n-Bu3SnCl; (b) n-BuLi (1 equiv), THF, -78 °C then CO2(g);
(c) 10 (2 equiv), PhSO2Cl (1.5 equiv), TMEDA (4.8 equiv), THF,
-78 °C, then lithio 7 [from 7 and n-BuLi (1 equiv)], THF, 0 °C; (d)
Br2 (1 equiv), Na2CO3, CH2Cl2, -78 °C; (e) AgOTf (1 equiv), 12
(1.3 equiv), 2,6-lutidine (1.5 equiv), CH2Cl2, slow addition of
solution of 6 (1 equiv), -78 °C f rt.
general strategy employed previously, in which (()-2
was derived via bicyclic acetal 3 from mixed acetal 4 by
means of an exo selective intramolecular [4 + 2] cyclo-
addition (Scheme 1).8 Thus, the problem was reduced
to the enantioselective construction of mixed acetal 4.
Since no suitable methodology existed, we developed
the first such methodology based on a novel enantiose-
lective synthesis of the key mixed acetal (R)-4 using a
chiral auxiliary-mediated substitution via neighboring
group participation.10
Incorporation of bicyclic lactam (1R)-7,2 into key di-
bromo ether precursor 6 should permit formation of
diastereomerically pure mixed acetal 5 (Scheme 2).
Participation of one of the imide carbonyl groups of the
controller unit should rigidify the reacting array of atoms
restricting the conformations available, and serve to
differentiate the faces of the reacting center during the
coupling.
As depicted in Scheme 3, preparation of dibromo ether
6 begins with divinyl ether (8). Metalation of 8 with
n-BuLi and KO-t-Bu (Schlosser’s base) followed by trap-
ping with n-Bu3SnCl affords the useful vinylstannane 9
in 98% yield.11 Subsequent transmetalation of 9 with
n-BuLi followed by carboxylation with CO2(g) provided
the lithium carboxylate salt 10 in 89% yield.12 Exposure
of 10 to PhSO2Cl in the presence of TMEDA generates
the related symmetrical anhydride, which is condensed
in situ with the lithium salt of 7 to afford the enol
(1) (a) Furuta, K.; Maruyama, T.; Yamamoto, H. J . Am. Chem. Soc.
1991, 113, 1041. (b) Parmee, E. R.; Tempkin, O.; Masamune, S. J . Am.
Chem. Soc. 1991, 113, 9365 and references cited therein.
(2) (a) Boeckman, R. K., J r.; Connell, B. J . J . Am. Chem. Soc. 1995,
117, 12368. (b) Boeckman, R. K., J r.; J ohnson, A. T.; Musselman, R.
A. Tetrahedron Lett. 1994, 35, 8521. (c) Boeckman, R. K., J r.; Nelson,
S. G.; Gaul, M. D. J . Am. Chem. Soc. 1992, 114, 2258.
(3) Structure of tetronolide: (a) Hirayama, H.; Kasai, M.; Shirahata,
K., Ohashi, Y.; Sasada, Y.; Bull. Chem. Soc. J pn. 1982, 55, 2984. (b)
Hirayama, H.; Kasai, M.; Shirahata, K. Tetrahedron Lett. 1980, 21,
2559.
(4) Total synthesis of tetronolide: (a) Takeda, T.; Kawanishi, E.;
Nakamura, H.; Yoshii, E. Tetrahedron Lett. 1991, 32, 4925. (b) Takeda,
K.; Urahata, M.; Yoshii, E.; Takayanagi, H.; Oqura, H. J . Org. Chem.
1986, 51, 4735. (c) Takeda, K.; Kobayashi, T.; Saito, K.; Yoshii, E. J .
Org. Chem. 1988, 53, 1092.
(5) Synthetic studies toward tetronolide: (a) Roush, W. R.; Brown,
B. B. J . Am. Chem. Soc. 1993, 115, 2268 and references therein. (b)
Roush, W. R.; Koyama, K. Tetrahedron Lett. 1992, 33, 6227.
(6) Synthetic studies toward structurally related spiro tetronic
acids: (a) Roush, W. R.; Sciotti, R. J . J . Am. Chem. Soc. 1994, 116,
6457. (b) Reference 5a and references therein. (c) Marshall, J . A.; Xie,
S. J . Org. Chem. 1992, 57, 2987.
(7) Boeckman, R. K., J r.; Barta, T. E.; Nelson, S. G. Tetrahedron
Lett. 1991, 32, 4091.
(8) Boeckman, R. K., J r.; Estep, K. M.; Nelson, S. G. Tetrahedron
Lett. 1991, 32, 4095.
(9) Boeckman, R. K., J r.; Walters, M. A.; Koyano, H. Tetrahedron
Lett. 1989, 30, 4787.
(10) March, J . Advanced Organic Chemistry, 3rd ed.; McGraw-Hill,
Inc.: New York, 1985; pp 272-286.
(11) (a) Schlosser, M.; Strunk, S. Tetrahedron Lett. 1984, 25, 741.
(b) Schlosser, M. J . Organomet. Chem. 1967, 8, 9. (c) Schlosser, M. J .
Organomet. Chem. 1967, 8, 419.
S0022-3263(96)01585-X CCC: $12.00 © 1996 American Chemical Society