10.1002/anie.201707531
Angewandte Chemie International Edition
COMMUNICATION
According to the mechanistic blueprint outlined in Scheme 1,
Eqn. 4, other classes of process might be achievable using a
reductant relay approach. Although further expansion of the
strategy will require the identification of new catalysts and/or
fragment coupling steps, we were keen to uncover additional
processes that might be achieved using the Ni(0)-system
presented here. Specifically, we envisaged that α-oxo imines
might couple with acrylates to provide lactams. This proposition
was appealing because only sparse reports document the use of
stoichiometric metallic reductants to achieve this seemingly
simple process, and no catalytic approaches are available.[7]
Pleasingly, when N-p-methoxyphenyl imine 10a was exposed to
conditions optimized for lactonization, spirocyclic lactam 11a was
generated in 68% yield (Table 3). Further evaluation revealed that
this lactamization process has similar scope to the lactonization
methodology. Indeed, electronically diverse isatin-based imines
10b-e all engaged in smooth reductive coupling to provide lactam
targets 11b-e in good to excellent yield. Extension of the protocol
to the imine derived from benzil 4b provided monocyclic system
12 in 68% yield; the alternate lactone product was not observed.
In summary, we demonstrate a unique approach to transfer
hydrogenative C-C bond formation, wherein the native reducing
power of an alcohol released upon lactonization or lactamization
is used to drive catalytic turnover. This provides an interesting
example of atom economical methodology, highlighting how an
otherwise wasted byproduct can be used productively. The
studies described here encompass the first catalytic methods for
accessing lactones or lactams by the direct reductive coupling of
carbonyls/imines with unfunctionalized acrylates. Future studies
will seek to identify other catalyst systems that can promote the
stereocontrolled coupling of a wider range of reaction partners.
Acknowledgements
The Bristol Chemical Synthesis CDT, funded by EPSRC
(EP/G036764/1) and Pfizer, for a studentship (to C.S.B.). The
European Research Council (ERC Grant 639594 CatHet) and the
Royal Society for a University Research Fellowship (to J.F.B).
We have also investigated
a one-pot imine formation-
Keywords: transfer hydrogenation, C-C bond, lactone, lactam
lactamization sequence (Scheme 4). Exposure of isatin 1a to p-
methoxyaniline under acidic conditions generated imine 10a.
Removal of the volatile components was followed by direct
addition of the reagents required for reductive lactamization,
allowing a telescoped synthesis of 11a in 50% yield over the one-
pot, three component process.
[1]
Selected reviews: (a) G. E. Dobereiner, R. H. Crabtree, Chem. Rev. 2010,
110, 681. (b) J. Leonard, A. J. Blacker, S. P. Marsden, M. F. Jones, K. R.
Mulholland, R. Newton, Org. Process Res. Dev. 2015, 19, 1400.
Selected recent contributions: (c) W. M. Akhtar, C. B. Cheong, J. R. Frost,
K. E. Christensen, N. G. Stevenson, T. J. Donohoe, J. Am. Chem. Soc.
2017, 139, 2577; (d) M. Peña-López, P. Piehl, S. Elangovan, H.
Neumann, M. Beller, Angew. Chem. Int. Ed. 2016, 55, 14967.
Selected recent contributions: (a) H. Aitchison, R. L. Wingad, D. F. Wass,
ACS. Catal. 2016, 6, 7125; (b) S. Chakraborty, P. E. Piszel, C. E. Hayes,
R. T. Baker, W. D. Jones, J. Am. Chem. Soc. 2015, 137, 14264.
Recent reviews: (a) J. M. Ketcham, I. Shin, T. P. Montgomery, M. J.
Krische, Angew. Chem., Int. Ed. 2014, 53, 9142; (b) J. Feng, Z. A. Kasun,
M. J. Krische, J. Am. Chem. Soc. 2016, 138, 5467. Selected examples:
(c) T.-Y. Chen, R. Tsutsumi, T. P. Montgomery, I. Volchkov, M. J. Krische,
J. Am. Chem. Soc. 2015, 137, 1798; (d) J. Feng, V. J. Garza, M. J.
Krische, J. Am. Chem. Soc. 2014, 136, 8911. (e) J. R. Zbieg, E.
Yamaguchi, E. L. McInturff, M. J. Krische, Science 2012, 336, 324.
Catalytic methodologies to access γ-butyrolactones from alcohols and
enones/acrylates: (a) J. L. Jeffrey, J. A. Terrett, D. W. C. MacMillan,
Nature 2015, 349, 1532; (b) E. L. McIntruff, J. Mowat, A. R. Waldeck, M.
J. Krische, J. Am. Chem. Soc. 2013, 135, 17230; (c) G. Bergonzini, P.
Melchiorre, Angew. Chem. Int. Ed. 2012, 51, 971; (d) J. Dugal-Tessier,
E. A. O'Bryan, T. B. H. Schroeder, D. T. Cohen, K. A. Scheidt, Angew.
Chem. Int. Ed. 2012, 51, 4963; (e) B. M. Trost, K. Hirano, Org. Lett. 2012,
14, 2446.
[2]
[3]
[4]
[5]
Non-catalytic methodologies to access γ-butyrolactones from carbonyls
and acrylates: (a) T. Shono, H. Ohmizu, S. Kawakami, H. Sugiyama,
Tetrahedron Lett. 1980, 21, 5029; (b) S.-i. Fukuzawa, A. Nakanishi, T.
Fujinami, S. Sakai, J. Chem. Soc. Perkin Trans 1 1988, 1669; (c) K.
Otsubo, J. Inanaga, M. Yamaguchi, Tetrahedron Lett. 1986, 27, 5763.
γ-Butyrolactones by (2+2+1) cycloaddition of ketones, ethylene and CO:
M. Tobisu, N. Chatani, T. Asaumi, K. Amako, Y. Ie, Y. Fukumoto, S.
Murai, J. Am. Chem. Soc. 2000, 122, 12663.
Table 3. Reductive coupling of benzyl acrylate with ketimines.
[6]
[7]
Non-catalytic methodologies to access γ-butyrolactams from imines and
acrylates: (a) N. Akane, T. Hatano, H. Kusui, Y. Nishiyama, Y. Ishii, J.
Org. Chem. 1994, 59, 7902. For a similar approach to lactams, see: (b)
Y. Hoshimoto, K. Ashida, Y. Sasaoka, R. Kumar, K. Kamikawa, X.
Verdaguer, A. Riera, M. Ohashi, S. Ogoshi, Angew. Chem. Int. Ed. 2017,
56, 8206.
Scheme 4. One-pot imine formation-lactamization.
This article is protected by copyright. All rights reserved.