Full Paper
Xiong, J.-S. Sun, J. Am. Chem. Soc. 2017, 139, 12736–12744; i) S. J. Danish-
efsky, Y. K. Shue, M. N. Chang, C. H. Wong, Acc. Chem. Res. 2015, 48, 643–
652; j) H. Dong, M. Rahm, T. Brinck, O. Ramström, J. Am. Chem. Soc. 2008,
130, 15270–15271; k) C. C. Wang, J. C. Lee, S. Y. Luo, S. S. Kulkarni, Y. W.
Huang, C.-C. Lee, K. L. Chang, S. C. Hung, Nature 2007, 446, 896–899.
a) M. Lalonde, T. H. Chan, Synthesis 1985, 817–845; b) C. Rücker, Chem.
Rev. 1995, 95, 1009–1064; c) J. Mulzer, B. Schöllhorn, Angew. Chem. Int.
Ed. Engl. 1990, 29, 431–432; Angew. Chem. 1990, 102, 433; d) M.-Y. Chen,
K.-C. Lu, A. S.-Y. Lee, C.-C. Lin, Tetrahedron Lett. 2002, 43, 2777–2780;
e) R. D. Crouch, Tetrahedron 2013, 69, 2383–2417.
a) E. J. Corey, A. Venkateswarlu, J. Am. Chem. Soc. 1972, 94, 6190–6191;
b) S. Hanessian, P. Lavallee, Can. J. Chem. 1975, 53, 2975–2977; c) M. S.
Arias-Pérez, M. J. Santos, Tetrahedron 1996, 52, 10785–10798.
a) F. Franke, R. D. Guthrie, Aust. J. Chem. 1997, 30, 639–647; b) A. P.
Mehta, S. H. Abdelwahed, T. P. Begley, J. Am. Chem. Soc. 2013, 135,
10883–10885; c) D. Lee, M. S. Taylor, J. Am. Chem. Soc. 2011, 133, 3724–
3727.
a) H. H. Brandstetter, E. Zbiral, Helv. Chim. Acta 1980, 63, 327–343; b)
H. H. Brandstetter, E. Zbiral, Helv. Chim. Acta 1978, 61, 1832–1841; c) E.
Sasaki, C.-I. Lin, K.-Y. Lin, H.-W. Liu, J. Am. Chem. Soc. 2012, 134, 17432–
17435; d) J. C. Lee, S. Francis, D. Dutta, V. Gupta, Y. Yang, J.-Y. Zhu, J. S.
Tash, E. Schönbrunn, G. I. Georg, J. Org. Chem. 2012, 77, 3082–3098; e)
T. K. Kotammagari, R. G. Gonnade, A. K. Bhattacharya, Org. Lett. 2017,
19, 3564–3567; f) C.-Y. Li, G.-J. Liu, W. Du, Y. Zhang, G.-W. Xing, Tetrahe-
dron Lett. 2017, 58, 2109–2112; g) L. Legentil, Y. Cabezas, O. Tasseau,
C. Tellier, F. Daligault, V. Ferrières, J. Org. Chem. 2017, 82, 7114–7122;
h) V. Dimakos, M. S. Taylor, Chem. Rev. 2018, 118, 11457–11517.
M. W. Bredenkamp, S. Afr. J. Chem. 1995, 48, 154–156.
D. A. Johnson, L. M. Taubner, Tetrahedron Lett. 1996, 137, 605–608.
a) M.-K. Chung, G. Orlova, J. D. Goddard, M. Schlaf, R. Harris, T. J. Beve-
ridge, G. White, F. R. Hallett, J. Am. Chem. Soc. 2002, 124, 10508–10518;
b) M.-K. Chung, M. Schlaf, J. Am. Chem. Soc. 2005, 127, 18085–18092.
J. M. Blackwell, K. L. Foster, V. H. Beck, W. E. Piers, J. Org. Chem. 1999, 64,
4887–4892.
4.8 Hz, 1H, H-6a), 3.86 (dd, J = 10.8 Hz and 5.2 Hz, 1H, H-6b), 3.66
(t, J = 9.2 Hz, 1H, H-4), 3.47–3.39 (m, 2H, H-2 and H-5), 2.15 (s, 3H,
OAc), 0.90 (s, 9H, Si(C(CH3)3)(CH3)2), 0.10 (s, 3H, Si(C(CH3)3)(CH3)2),
0.09 (s, 3H, Si(C(CH3)3)(CH3)2). 13C NMR (100 MHz, CDCl3): δ =
172.4, 133.1, 131.6, 129.2, 128.4, 88.4, 79.0, 78.9, 70.9, 70.4, 64.3,
25.9, 21.2, 18.4, –5.3 ppm; HRMS (ESI-TOF): Calculated for
[C20H32O6SSiNa]+: 451.1581, found 451.1576.
[2]
Phenyl 6,6′-Di-O-(tert-butyldimethylsilyl)-3′-benzoyl-1-thio-ꢀ-D-
lactoside (16aa):[11d] Following the general procedure B, the reac-
[3]
[4]
tion was carried out with phenyl-1-thio-ꢀ- -lactoside 16 (0.2 mmol),
D
DIPEA (211.0 μL, 6.0 equiv.), TBSCl (123.0 mg, 4.0 equiv.) in dry
solvent (1.1 mL) at room temperature. Upon completion as shown
by TLC, benzoic anhydride (23.0 mg, 1.2 equiv.) was added and the
reaction mixture was left stirring at 40 °C for 12 h. The crude prod-
uct was directly purified by flash column chromatography (ethyl
acetate/petroleum ether: 1:2), afforded compound 16aa as a vis-
[5]
1
cous colorless oil (112.0 mg, 73 %). H NMR (400 MHz, CDCl3): δ =
8.11–8.08 (m, 2H, ArH), 7.62–7.56 (m, 3H, ArH), 7.49–7.43 (m, 2H,
ArH), 7.30–7.28 (m, 3H, ArH), 5.03 (dd, J = 10.0 Hz and 2.8 Hz, 1H,
H-3′), 4.56–4.49 (m, 2H, H-1 and H-1′), 4.30 (d, J = 2.0 Hz, 1H, H-4′
), 4.08 (dd, J = 9.6 Hz and 8.0 Hz, H-2′), 3.96–3.90 (m, 4H, H-6a, H-
6b, H-6a′ and H-6b′), 3.71–3.58 (m, 3H, H-3, H-4 and H-5′), 3.45–
3.36 (m, 2H, H-2 and H-5), 0.90 (s, 9H, Si(C(CH3)3)(CH3)2), 0.88 (s, 9H,
Si(C(CH3)3)(CH3)2), 0.09 (s, 6H, Si(C(CH3)3)(CH3)2), 0.08 (s, 6H,
Si(C(CH3)3)(CH3)2).
[6]
[7]
[8]
Phenyl-6,6′-Di-O-(tert-butyldimethylsilyl)-3′-acetyl-1-thio-ꢀ-D-
lactoside (16ab):[11d] Following the general procedure B, the reac-
tion was carried out with phenyl-1-thio-ꢀ- -lactoside 16 (0.2 mmol),
D
DIPEA (211.0 μL, 6.0 equiv.), TBSCl (123.0 mg, 4.0 equiv.) in dry
solvent (1.1 mL) at room temperature. Upon completion as shown
by TLC, acetic anhydride (55.5 mg, 1.2 equiv.) was added and the
reaction mixture was left stirring at 40 °C for 12 h. The crude prod-
uct was directly purified by flash column chromatography (ethyl
acetate/petroleum ether: 1:1), afforded compound 16ab as a vis-
[9]
[10]
a) L. H. Sommer, J. E. Lyons, J. Am. Chem. Soc. 1969, 91, 7061–7066;
b) E. Lukevics, M. Dzintara, J. Organomet. Chem. 1985, 295, 265–315;
c) M. P. Doyle, K. G. High, V. Bagheri, R. J. Pieters, P. J. Lewis, M. M. Pearson,
J. Org. Chem. 1990, 55, 6082–6086.
1
cous colorless oil (104.2 mg, 74 %). H NMR (400 MHz, CDCl3): δ =
[11]
[12]
a) B. Ren, M. Rahm, X. L. Zhang, Y. X. Zhou, H. Dong, J. Org. Chem. 2014,
79, 8134–8142; b) X. L. Zhang, B. Ren, J.-T. Ge, Z. C. Pei, H. Dong, Tetrahe-
dron 2016, 72, 1005–1010; c) Y. C. Lu, C. X. Hou, J. L. Ren, X. T. Xin, H. F.
Xu, Y. X. Pei, H. Dong, Z. C. Pei, Molecules 2016, 21, 641–649; d) J. Lv, J.-
T. Ge, T. Luo, H. Dong, Green Chem. 2018, 20, 1987–1991; e) J. Lv, T. Luo,
Y. Zhang, Z. C. Pei, H. Dong, ACS Omega 2018, 3, 17717–17723.
a) B. Ren, M. Y. Wang, J. Y. Liu, J. T. Ge, H. Dong, ChemCatChem 2015, 7,
761–765; b) B. Ren, O. Ramström, Q. Zhang, J.-T. Ge, H. Dong, Chem. Eur.
J. 2016, 22, 2481–2486; c) H. F. Xu, B. Ren, W. Zhao, Y. C. Lu, Y. X. Pei, H.
Dong, Z. C. Pei, Tetrahedron 2016, 72, 3490–3499; d) B. Ren, J. Lv, Y.
Zhang, J. Tian, H. Dong, ChemCatChem 2017, 9, 950–953; e) H. F. Xu, Y.
Zhang, H. Dong, Y. C. Lu, Y. X. Pei, Z. C. Pei, Tetrahedron Lett. 2017, 58,
4039–4042.
a) B. Wu, J.-T. Ge, B. Ren, Z.-C. Pei, H. Dong, Tetrahedron 2015, 71, 4023–
4030; b) M. Emmadi, S. S. Kulkarni, Org. Biomol. Chem. 2013, 11, 4825–
4830; c) H. Dong, Z. C. Pei, O. Ramström, Chem. Commun. 2008, 1359–
1361; d) H. Dong, Z. C. Pei, M. Angelin, S. Byström, O. Ramström, J. Org.
Chem. 2007, 72, 3694–3701.
a) A. Français, D. Urban, J.-M. Beau, Angew. Chem. Int. Ed. 2007, 46, 8662–
8665; Angew. Chem. 2007, 119, 8816; b) Y. Vohra, M. Vasan, A. Venot, G.-
J. Boons, Org. Lett. 2008, 10, 3247–3250; c) K.-K. T. Mong, C.-S. Chao, M.-
C. Chen, C.-W. Lin, Synlett 2009, 4, 603–606; d) R. A. Jones, R. Davison,
A. T. Tran, N. Smith, M. C. Galan, Carbohydr. Res. 2010, 345, 1842–1845;
e) A. T. Tran, R. A. Jones, J. Pastor, J. Boisson, N. Smith, M. C. Galan, Adv.
Synth. Catal. 2011, 353, 2593–2598; f) J.-T. Ge, L. Zhou, T. Luo, J. Lv, H.
Dong, Org. Lett. 2019, 21, 5903–5906.
7.57–7.54 (m, 2H, ArH), 7.30–7.27 (m, 3H, ArH), 4.77 (dd, J = 10.0 Hz
and 2.8 Hz, 1H, H-3′), 4.52 (d, J = 9.6 Hz, 1H, H-1), 4.41 (d, J = 8.0 Hz,
1H, H-1′), 4.16 (d, J = 2.8 Hz, H-4′), 3.94–3.86 (m, 5H, H-2′, H-6a, H-
6b, H-6a′ and H-6b′), 3.67–3.54 (m, 3H, H-3, H-4 and H-5′), 3.44–
3.33 (m, 2H, H-2 and H-5), 2.17 (s, 3H, OAc), 0.89 (s, 9H,
Si(C(CH3)3)(CH3)2), 0.87 (s, 9H, Si(C(CH3)3)(CH3)2), 0.09–0.06 (m, 12H,
2 × Si(C(CH3)3)(CH3)2).
Acknowledgments
This study was supported by the National Nature Science Foun-
dation of China (Nos. 21772049, 21708010). The authors are also
grateful to the staffs in the Analytical and Test Center of HUST
for support with the NMR instruments and mass spectrometers.
[13]
[14]
Keywords: Homogeneous catalysis · One-pot reactions ·
Regioselectivity · Silylation · Synthetic methods
[1] a) T. W. Greene, P. G. M. Wuts, Greene's Protective Groups in Organic Syn-
thesis, 4rd ed. Wiley: New York, 2006; b) S. S. Kulkarni, C.-C. Wang, N. M.
Sabbavarapu, A. R. Podilapu, P.-H. Liao, S.-C. Hung, Chem. Rev. 2018, 118,
8025–8104; c) C. S. Bennett, M. C. Galan, Chem. Rev. 2018, 118, 7931–
7985; d) B. Dhakal, D. Crich, J. Am. Chem. Soc. 2018, 140, 15008–15015;
e) Y. Zhang, F.-L. Zhao, T. Luo, Z. Pei, H. Dong, Chem. Asian J. 2019, 14,
223–234; f) J.-T. Ge, L. Zhou, F.-L. Zhao, H. Dong, J. Org. Chem. 2017, 82,
12613–12623; g) J.-T. Ge, Y.-Y. Li, J. Tian, R.-Z. Liao, H. Dong, J. Org. Chem.
2017, 82, 7008–7014; h) Y. Hu, K. Yu, L.-L. Shi, L. Liu, J.-J. Sui, D.-Y. Liu, B.
[15]
[16]
S. K. Chaudhary, O. Hernandez, Tetrahedron Lett. 1979, 20, 99–102.
a) A. Wissner, C. V. Grudzinskas, J. Org. Chem. 1978, 43, 3972–3974; b)
D. E. Ward, C. K. Rhee, Tetrahedron Lett. 1991, 32, 7165–7166.
B. Ren, L. Gan, L. Zhang, N.-N. Yan, H. Dong, Org. Biomol. Chem. 2018,
16, 5591–5597.
[17]
Eur. J. Org. Chem. 2019, 6383–6395
6394
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim