MariFe Flores et al. / Tetrahedron: Asymmetry 23 (2012) 76–85
85
TMS): d = 7.94 (d, 3J (H,H) = 8.0 Hz, 2H), 7.65 (t, 3J (H,H) = 7.8 Hz,
1H), 7.49 (t, 3J (H,H) = 7.8 Hz, 2H), 7.37–7.25 (m, 10H), 5.14 (d, 3J
(H,H) = 2.7 Hz, 1H), 4.76 (m, 2H), 4.63 (m, 2H), 4.42 (m, 1H), 4.32
(m, 1H), 4.16 (dd, 3J (H,H) = 2.7, 5.2 Hz, 1H), 3.95 (m, 1H), 3.86 (t,
3J (H,H) = 5 Hz, 1H), 3.44–3.36 ppm (m, 2H); 13C NMR (100 MHz,
CDCl3, 25°, TMS): d = 138.9, 137.8, 137.7, 134.1, 129.5, 129.2,
128.9, 128.5, 128.3, 128, 127.8, 84.6, 84.0, 72.7, 71.8, 65.3, 68.3,
59.1 ppm; HRMS (EI) C26H27NO5S requires (M+Na) 488.1502;
found 488.1510.
Guarna, F.; Merino, P.; Tejero, T. Org. Lett. 2003, 5, 4235–4238; (g) Closa, M.;
Wightman, R. H. Synth. Commun. 1998, 28, 3443–3450; (h) Liautard, V.;
Desvergnes, V.; Martin, O. R. Tetrahedron: Asymmetry 2008, 19, 1999–2002; (i)
Desvergnes, S.; Vallee, Y.; Py, S. Org. Lett. 2008, 10, 2967–2970; (j) Desvergnes,
S.; Desvergnes, V.; Martin, O. R.; Itoh, K.; Liu, H.; Py, S. Bioorg. Med. Chem. 2007,
15, 6443–6449; (k) Schleiss, J.; Rollin, P.; Tatibouet, A. Angew. Chem, Int. Ed.
2010, 49, 577–580; (l) Palmer, A. M.; Jager, V. Eur. J. Org. Chem. 2001, 1293–
1308; (m) Kaliappan, K. P.; Das, P. Synlett 2008, 841–844; (n) Cardona, F.;
Parmeggiani, C.; Faggi, E.; Bonaccini, C.; Gratteri, P.; Sim, L.; Gloster, T. M.;
Roberts, S.; Davies, G. J.; Rose, D. R.; Goti, A. Chem. Eur. J. 2009, 15, 1627–1636;
See also: (o) Alcaide, B.; Almendros, P.; Alonso, J. M.; Aly, M. F.; Pardo, C.; Saez,
E.; Torres, M. R. J. Org. Chem. 2002, 67, 7004–7013; (p) Busqué, F.; de March, P.;
Figueredo, M.; Font, J.; Gallagher, T.; Milan, S. Tetrahedron: Asymmetry 2002, 13,
437–445; (q) Cordero, F. M.; Pisaneschi, F.; Gensini, M.; Goti, A.; Brandi, A. Eur.
J. Org. Chem. 2002, 1941–1951; (r) Richichi, B.; Cicchi, S.; Chiacchio, U.; Romeo,
G.; Brandi, A. Tetrahedron 2003, 59, 5231–5240; (s) Pisaneschi, F.; Della Monica,
C.; Cordero, F. M.; Brandi, A. Tetrahedron Lett. 2002, 43, 5711–5714; (t)
Nagasawa, K.; Georgieva, A.; Koshino, H.; Nakata, T.; Kita, T.; Hashimoto, Y. Org.
Lett. 2002, 4, 177–180; (u) Shimokawa, J.; Shirai, K.; Tanatani, A.; Hashimoto,
Y.; Nagasawa, K. Angew. Chem., Int. Ed. 2004, 43, 1559–1562; (v) Shimokawa, J.;
Ishiwata, T.; Shirai, K.; Koshino, H.; Tanatani, A.; Nakata, T.; Hashimoto, Y.;
Nagasawa, K. Chem. Eur. J. 2005, 11, 6878–6888; (w) Alibés, R.; Blanco, P.; Casas,
E.; Closa, M.; de March, P.; Figueredo, M.; Font, J.; Sanfeliu, E.; Alvarez-Larena,
A. J. Org. Chem. 2005, 70, 3157–3167; (x) Socha, D.; Jurczak, M.; Frelek, J.;
Klimek, A.; Rabiczko, J.; Urbanczyk-Lipkowska, Z.; Suwinska, K.; Chmielewski,
M.; Cardona, F.; Goti, A.; Brandi, A. Tetrahedron: Asymmetry 2001, 12, 3163–
3172; (y) Cardona, F.; Faggi, E.; Liguori, F.; Cacciarini, M.; Goti, A. Tetrahedron
Lett. 2003, 44, 2315–2318.
5.4.3. (2R,3aS,4S,5S)-4,5-Bis(benzyloxy)-2-phenylsulfonyl-hexa-
hydropyrrolo[1,2-b]isoxazole 7c
½
a 2D0
ꢂ
¼ þ90:5 (c 0.2, CHCl3); IR (film)
m: 3412, 3052 3023, 2925,
2860, 1442, 1307, 1066, 1144 cmꢀ1 1H NMR (400 MHz, CDCl3,
;
25°, TMS): d = 7.96 (d, J = 8.1 Hz, 2H), 7.58 (t, 3J (H,H) = 7.6 Hz, 1H),
7.55 (t, 3J (H,H) = 7.8 Hz, 2H), 7.34–7.22 (m, 10H), 5.07 (dd, 3J
(H,H) = 3.4, 8.2 Hz, 1H), 4.52 (d, 3J (H,H) = 11.7 Hz, 2H), 4.48 (d, 3J
(H,H) = 11.7 Hz, 1H), 4.43 (d, 3J (H,H) = 11.7 Hz, 1H), 4.09 (dd, 3J
(H,H) = 3.0, 5.4 Hz, 1H), 3.95–3.90 (m, 2H), 3.48 (dd, 3J (H,H) = 5.4,
14.4 Hz, 1H), 3.39 (dd, 3J (H,H) = 3.0, 14.4 Hz, 1H), 3.21 (ddd, 3J
(H,H) = 3.4, 8.2, 14.0 Hz,, 1H), 2.72 ppm (ddd, 3J (H,H) = 5.6, 8.2,
14.0 Hz, 1H); 13C NMR (100 MHz, CDCl3, 25°, TMS): d = 138.5,
137.4, 137.3, 134.0, 129.5, 129.3, 129.0, 128.5, 128.0, 127.9, 127.7,
92.7, 87.9, 84.3, 71.9, 71.6, 69.8, 60.1, 34.9 ppm; HRMS (EI)
4. (a) Croce, P. D.; Rosa, C.; Stradi, R.; Ballabio, M. J. Heterocycl. Chem. 1983, 20,
819; (b) El-Din, A. M. N. Bull. Chem. Soc. Jpn. 1986, 59, 1239–1243; (c)
Sinkkonen, J.; Martiskainen, O.; Pihlaja, K. J. Heterocycl. Chem. 2006, 43, 1267;
See also Ref. 6. For other interesting examples or 1,3-dipolar reaction of vinyl
sulfones see: (d) Laha, J. K. Chem. Nat. Compd. 2010, 46, 254–256; (e) Llamas, T.;
Arrayás, R. G.; Carretero, J. C. Org. Lett. 2006, 8, 1795–1798. and references cited
therein; (f) Padmavathi, V.; Reddy, K. V.; Valaiah, A.; Reddy, T. V. R.; Reddy, D. B.
Heteroat. Chem. 2002, 13, 677–682; (g) Burdisso, M.; Gandolfi, R.; Grunanger, P.;
Rastelli, A. J. Org. Chem. 1990, 55, 3427–3429; (h) García Ruano, J. L.; Fraile, A.;
Martín Castro, A. M.; Martín, M. R. J. Org. Chem. 2005, 70, 8825–8834; See also
the 1,3-dipolar cycloaddition of a vinylsulfonates: (i) Caddick, S.; Bush, H. D.
Org. Lett. 2003, 5, 2489–2492.
C26H27NO5S requires (M+Na) 488.1502; found 488.1482.
5.5. Conversion of 5b into 5a
A stirred solution of isoxazolidine 5b (34.5 mg, 0.22 mmol) in
toluene (0.5 mL) was heated at 110 °C. After 72 h the reaction
was quenched with saturated aqueous solution of NH4Cl and the
product was extracted with EtOAc (3 ꢁ 15 mL). The combined or-
ganic layers were washed with brine, dried (Na2SO4), filtered,
and concentrated, obtaining isoxazolidine 5a in a 100% yield.
5. (a) Kaduk, J. A.; Cahill, P. J.; Venkateshwaran, L. N. J. Appl. Crystallogr. 1999, 32,
15–20; (b) Rudolph, F. A. M.; Fuller, A. L.; Slawin, A. M. Z.; Bühl, M.; Aitken, R.
A.; Woollins, J. D. J. Chem. Crystallogr. 2010, 40, 253–265.
6. See Refs.4a–c and: (a) Moriyama, S.; Vallée, Y. Synthesis 1998, 393–404; (b)
Jones, R. C. F.; Martin, J. N.; Smith, P. Synlett 2000, 967–970; (c) Heaney, F.;
Fenlon, J.; McArdle, P.; Cunningham, D. Org. Biomol. Chem. 2003, 1, 1122–1132;
´
(d) Heaney, F.; Fenlon, J.; OMahony, C.; McArdle, P.; Cunningham, D. Org.
Acknowledgements
´
Biomol. Chem. 2003, 1, 4302–4316; (e) Heaney, F.; OMahony, C.; McArdle, P.;
Cunningham, D. Arkivoc 2003, vii, 161–179; (f) Sims, J.; Houk, K. N. J. Am. Chem.
Soc. 1973, 95, 5798–5800; (g) Bimanand, A. Z.; Houk, K. N. Tetrahedron Lett.
1983, 24, 435–438; (h) Dondas, H. A.; Cummins, J. E.; Grigg, R.; Thornton-Pett,
M. Tetrahedron 2001, 57, 7951–7964; (i) Burdisso, M.; Gandolfi, R.; Grünanger,
P. Tetrahedron 1989, 45, 5579–5594.
The authors would like to thank the F.S.E., MICINN (CTQ2009-
11172) and Junta de Castilla y León for the financial support
(GR178 and SA001A09) and for the doctoral fellowships awarded
to M.F.F. and C.T.N. Drs. A. M. Lithgow and C. Raposo are acknowl-
edged for the NMR and Mass Spectra, respectively.
7. (a) Cordero, F. M.; Machetti, F.; De Sarlo, F.; Brandi, A. Gazz. Chim. Ital. 1997, 127,
25–27; See also: (b) Murahashi, S. I.; Shiota, T. Tetrahedron Lett. 1987, 28, 2383–
2386; (c) Marradi, M.; Cicchi, S.; Delso, I.; Rosi, L.; Tejero, T.; Merino, P.; Goti, A.
Tetrahedron Lett. 2005, 46, 1287–1290; (d) Merino, P.; Delso, I.; Tejero, T.;
Cardona, F.; Goti, A. Synlett 2007, 2651–2654.
References
8. Cicchi, S.; Höld, I.; Brandi, A. J. Org. Chem. 1993, 58, 5274–5275.
9. Crystallographic data (excluding structure factors) for the structures reported
in this paper has been deposited at the Cambridge Crystallographic Data Centre
as supplementary material no. CCDC 812744–812747.
10. Last decade relevant examples are: (a) Cossío, F. P.; Marao, I.; Jiao, H.; Schleyer,
P. V. R. J. Am. Chem. Soc. 1999, 121, 6737; (b) Diaz, J.; Silva, M. A.; Goodman, J.
M.; Pellegrinet, S. C. Tetrahedron 2005, 61, 10886–10893; (c) Domingo, L. R. Eur.
J. Org. Chem. 2000, 12, 2265–2272; (d) Carda, M.; Portoles, R.; Murga, J.; Uriel,
S.; Marco, J. A.; Domingo, L. R.; Zaragoza, R. J.; Röper, H. J. Org. Chem. 2000, 65,
7000–7009.
11. (a) De Benedetti, P. G.; Quartieri, S.; Rastelli, A.; De Amici, M.; De Micheli, M.;
Gandolfi, R.; Gariboldi, P. J. Chem. Soc., Perkin Trans. 1982, 95–100; (b)
Marakchi, K.; Kabbaj, O.; Komiha, N.; Jalal, R.; Esseffar, M. J. Mol. Struct.
Theochem. 2003, 620, 271–281.
12. Jaguar, version 7.6, Schrodinger, LLC, New York, NY, 2009.
13. Becke, A. D. J. Chem. Phys. 1988, 38, 3098–3100.
14. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.
15. Simon, L.; Goodman, J. M. Org. Biomol. Chem. 2011, 9, 689–700.
16. (a) Pieniazek, S. N.; Clemente, F. R.; Houk, K. N. Angew. Chem., Int. Ed. 2008, 47,
7746–7749; (b) Paton, R. S.; Mackey, J. L.; Kim, W. H.; Lee, J. H.; Danishefsky, S.
J.; Houk, K. N. J. Am. Chem. Soc. 2010, 132, 9335–9340.
17. Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory Comput. 2006, 2, 364–382.
18. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital
Theory; Wiley: New York, NY, 1986.
1. (a) Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; John Wiley
& Sons: New York, 1984; Vol. 1, pp 42–47; (b)See also Synthetic Applications of
1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products;
Padwa, A., Pearson, W. H., Eds.; John Wiley and Sons: Hoboken, NJ, 2003; For
additional reviews of 1,3-dipolar cycloadditions, see: (c) Nájera, C.; Sansano, J.
M. Curr. Org. Chem. 2003, 7, 1105–1150; (d) Kanemasa, S. Synlett 2002, 1371–
1387; (e) Gothelf, K. V. In Cycloaddition Reactions in Organic Synthesis;
Kobayashi, S., Jørgensen, K. A., Eds.; Wiley-VCH: Weinheim, Germany, 2002;
pp 211–245; For reviews on asymmetric 1,3-dipolar cycloadditions, see: (f)
Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863–910; (g) Pellissier, H.
Tetrahedron 2007, 63, 3235–3285.
2. (a) Martin, J. N.; Jons, R. C. Nitrones. In Synthetic Applications of 1,3-Dipolar
Cycloaddition. Chemistry Towards Heterocycles and Natural Products; Padwa, A.,
Pearson, W. H., Eds.; John Wiley & Sons: Hoboken, NJ, 2003. Chapter 1; (b)
Hashimoto, T.; Maruoka, K. 1,3-Dipolar Cycloadditions. In Chapter 3 in Handbook
of Cyclization Reactions; Ma, S., Ed.; Wiley-VCH: New York, 2009; (c) Gothelf, K.
V.; Jørgensen, K. A. Chem. Commun. 2000, 1449–1458; (d) Merino, P. In Science of
Synthesis Knowledge Updates; Schaumann, E., Ed.; George Thieme: Stuttgart,
2011; Vol. 2010/4, pp 325–403; (e) Merino, P. In Science of Synthesis; Bellus, D.,
Padwa, A., Eds.; George Thieme: Stuttgart, 2004; Vol. 27, pp 511–580.
3. (a) Cardona, F.; Moreno, G.; Guarna, F.; Vogel, P.; Schuetz, C.; Merino, P.; Goti, A.
J. Org. Chem. 2005, 70, 6552–6555; (b) Brandi, A.; Cardona, F.; Cicchi, S.;
Cordero, F. M.; Goti, A. Chem. Eur. J. 2009, 15, 7808–7821; (c) Cicchi, S.; Marradi,
M.; Vogel, P.; Goti, A. J. Org. Chem. 2006, 71, 1614–1619; (d) Delso, I.; Tejero, T.;
Goti, A.; Merino, P. Tetrahedron 2010, 66, 1220–1227; (e) Merino, P.; Delso, I.;
Tejero, T.; Cardona, F.; Marradi, M.; Faggi, E.; Parmeggiani, C.; Goti, A. Eur. J. Org.
Chem. 2008, 2929–2947; (f) Goti, A.; Cicchi, S.; Mannucci, V.; Cardona, F.;
19. Goldstein, E.; Beno, B.; Houk, K. N. J. Am. Chem. Soc. 1996, 118, 6036–6043.
20. Marten, B.; Kim, K.; Cortis, C.; Friesner, R. A.; Murphy, R. B.; Ringnalda, M. N.;
Sitkoff, D.; Honig, B. J. Phys. Chem. 1996, 100, 11775.
21. Goodman, J. M.; Silva, M. A. Tetrahedron Lett. 2003, 44, 8233–8236.