ORGANIC
LETTERS
2012
Vol. 14, No. 7
1922–1925
Addition of Indoles to Oxyallyl Cations
for Facile Access to r-Indole Carbonyl
Compounds
Qiang Tang, Xingkuan Chen, Bhoopendra Tiwari, and Yonggui Robin Chi*
Division of Chemistry & Biological Chemistry, School of Physical & Mathematical
Sciences, Nanyang Technological University, Singapore 637371, Singapore
Received March 7, 2012
ABSTRACT
A direct coupling of unprotected indoles and R-halo ketones via in situ generated oxyallyl cation intermediates is described. The reactions
efficiently afford R-indole carbonyl compounds with good to quantitative yields.
R-Indole carbonyl compounds are important building
blocks for the concise preparation of synthetic or naturally
occurring bioactive molecules, such as β-carbolines, car-
bazoles, serotonins, tryptophols, hapalindole Q, and
Fishcherindole U (Figure 1).1 The synthesis of R-indole
carbonyl compounds can be realized via multistep pro-
tocols,2 such as epoxide opening by indole magnesium chlo-
rides followed by oxidation,3 reactions of Weinreb amides
with Grignard reagents,4base-promoted condensation between
protected indoles and ketones followed by hydroxylation
and oxidation,5 and other cross-coupling methods,6 in
which substrate protection and prefunctionalization are
typically required. Baran and co-workers recently devel-
oped the direct coupling of unprotected indoles with in situ
(6) Richter, J. M.; Whitefield, B. W.; Maimone, T. J.; Lin, D. W.;
Castroviejo, M. P.; Baran, P. S. J. Am. Chem. Soc. 2007, 129, 12857.
(7) Baran, P. S.; Richter, J. M. J. Am. Chem. Soc. 2004, 126, 7450.
(8) (a) Richter, J. M.; Ishihara, Y.; Masuda, T.; Whitefield, B. W.;
Llamas, T. S.; Pohjakallio, A.; Baran, P. S. J. Am. Chem. Soc. 2008, 130,
17938. (b) Baran, P. S.; Maimone, T. J.; Richter, J. M. Nature 2007, 446,
404. (c) Baran, P. S.; Richter, J. M. J. Am. Chem. Soc. 2005, 127, 15394.
(d) Baran, P. S.; Richter, J. M.; Lin, D. W. Angew. Chem., Int. Ed. 2005,
44, 609.
(9) For reviews, see: (a) Lohse, A. G.; Hsung, R. P. Chem.;Eur. J.
2011, 17, 3812. (b) Harmata, M. Chem. Commun. 2010, 46, 8886. (c)
Harmata, M. Chem. Commun. 2010, 46, 8904. (d) Foley, D. A.; Maguire,
A. R. Tetrahedron 2010, 66, 1131. (e) Grant, T. N.; Rieder, C. J.; West,
F. G. Chem. Commun. 2009, 5676. (f) Harmata, M. Adv. Synth. Catal.
2006, 348, 2297. (g) Battiste, M. A.; Pelphrey, P. M.; Wright, D. L.
Chem.;Eur. J. 2006, 12, 3438. (h) Huang, J.; Hsung, R. P. Chemtracts
2005, 18, 207. (i) Tamaru, Y. Eur. J. Org. Chem. 2005, 2647. (j) Niess, B.;
Hoffmann, H. M. R. Angew. Chem., Int. Ed. 2005, 44, 26. (k) Hartung,
I. V.; Hoffmann, H. M. R. Angew. Chem., Int. Ed. 2004, 43, 1934. (l)
Harmata, M.; Rashatasakhon, P. Tetrahedron 2003, 59, 2371. (m)
Harmata, M. Acc. Chem. Res. 2001, 34, 595. (n) Rigby, J. H.; Pigge,
F. C. Org. React. 1997, 51, 351. (o) Harmata, M. Tetrahedron 1997, 53,
6235. (p) Mann, J. Tetrahedron 1986, 42, 4611. (q) Tidwell, T. T. Angew.
Chem., Int. Ed. 1984, 23, 20. (r) Hoffmann, H. M. R. Angew. Chem., Int.
Ed. 1984, 23, 1. (s) Noyori, R.; Hayakawa, Y. Org. React. 1983, 29, 163.
(t) Noyori, R. Acc. Chem. Res. 1979, 12, 61. (u) Takaya, H.; Makino, S.;
Hayakawa, Y.; Noyori, R. J. Am. Chem. Soc. 1978, 100, 1765.
(v) Hoffmann, H. M. R. Angew. Chem., Int. Ed. 1973, 12, 819.
(1) (a) Cao, R.; Peng, W.; Wang, Z.; Xu, A. Curr. Med. Chem. 2007,
€
14, 479. (b) Knolker, H.-J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303. (c)
Berger, M.; Gray, J. A.; Roth, B. L. Annu. Rev. Med. 2009, 60, 355. (d)
Kochanowska-Karamyan, A. J.; Hamann, M. T. Chem. Rev. 2010, 110,
4489. (e) Moore, R. E.; Cheuk, C.; Yang, X. Q. G.; Patterson, G. M. L.;
Bonjouklian, R.; Smitka, T. A.; Mynderse, J. S.; Foster, R. S.; Jones,
N. D. J. Org. Chem. 1987, 52, 1036. (f) Stratmann, K.; Moore, R. E.;
Bonjouklian, R.; Deeter, J. B.; Patterson, G. M. L.; Shaffer, S.; Smith,
C. D.; Smitka, T. A. J. Am. Chem. Soc. 1994, 116, 9935.
(2) Bartels, B.; Weinbrenner, S.; Marx, D.; Diefenbach, J.; Dunkern,
T.; Menge, W. M. P. B.; Christiaans, J. A. M. WO 2010/015587 A1,
2010, Nycomed GmbH, Germany, and references therein.
(3) Ghosh,A.;Wang,W.;Freeman,J.P.;Althaust,J.S.;VonVoigtlander,
P. F.; Scahill, T. A.; Mizsak, S. A.; Szmuszkovicz, J. Tetrahedron 1991, 47,
8653.
(4) Duval, E.; Cuny, G. D. Tetrahedron Lett. 2004, 45, 5411.
(5) (a) Deskus, J. A.; Epperson, J. R.; Sloan, C. P.; Cipollina, J. A.;
Dextraze, P.; Qian-Cutrone, J.; Gao, Q.; Ma, B.; Beno, B. R.; Mattson,
G. K.; Molski, T. F.; Krause, R. G.; Taber, M. T.; Lodge, N. J.;
Mattson, R. J. Bioorg. Med. Chem. Lett. 2007, 17, 3099. (b) Bignan,
G. C.; Battista, K.; Connolly, P. J.; Orsini, M. J.; Liu, J.; Middleton,
S. A.; Reitz, A. B. Bioorg. Med. Chem. Lett. 2006, 16, 3524.
r
10.1021/ol300591z
Published on Web 03/28/2012
2012 American Chemical Society