considered by assuming that η2-vinyl transition metal (1-metalla-
cyclopropene) intermediates possess electrophilic carbene char-
acter and that a 1,2-silyl shift to the electron-deficient centres
readily occurs.11 Indeed, the η2-vinyl pathway can explain the
mechanism of trans-bis-silylation, albeit with a lack of exper-
imental evidence for the intermediate species (Scheme 2).
Initially, the Si–Si bond of 4 undergoes oxidative addition to a
Rh(I) complex to generate bis(silyl)rhodium(III) species A,12 and
subsequently, the C–C triple bond inserts intramolecularly into
the Rh–Si bond to form (Z)-β-silylalkenyl(silyl)rhodium(III) B
that has a four-membered ring. After isomerisation from B to η2-
vinylrhodium (1-rhodacyclopropene) species C, the dimethyl-
silylene group migrates to the electrophilic carbene carbon to
afford intermediate D, which then rearranges to another β-silyl-
alkenyl(silyl)rhodium(III) species E. Finally, reductive elimin-
Chem. Lett., 1991, 20, 245; (c) T. Ohmura, K. Oshima and M. Suginome,
Chem. Commun., 2008, 1416.
5 For recent examples, see: (a) T. Matsuda, S. Kadowaki, T. Goya and
M. Murakami, Org. Lett., 2007, 9, 133; (b) T. Matsuda, S. Kadowaki and
M. Murakami, Chem. Commun., 2007, 2627; (c) T. Ohmura, K. Masuda
and M. Suginome, J. Am. Chem. Soc., 2008, 130, 1526; (d) T. Matsuda,
S. Kadowaki, Y. Yamaguchi and M. Murakami, Chem. Commun., 2008,
5744; (e) M. Shimizu, K. Mochida and T. Hiyama, Angew. Chem., Int.
Ed., 2008, 47, 9760; (f) M. Tobisu, M. Onoe, Y. Kita and N. Chatani, J.
Am. Chem. Soc., 2009, 131, 7506; (g) T. Ureshino, T. Yoshida,
Y. Kuninobu and K. Takai, J. Am. Chem. Soc., 2010, 132, 14324;
(h) T. Matsuda, Y. Yamaguchi, N. Ishida and M. Murakami, Synlett,
2010, 2743; (i) T. Matsuda, Y. Suda and Y. Fujisaki, Synlett, 2011, 813;
( j) Y. Liang, S. Zhang and Z. Xi, J. Am. Chem. Soc., 2011, 133, 9204;
(k) T. Matsuda, Y. Yamaguchi, M. Shigeno, S. Sato and M. Murakami,
Chem. Commun., 2011, 47, 8697; (l) E. Shirakawa, S. Masui, R. Narui,
R. Watabe, D. Ikeda and T. Hayashi, Chem. Commun., 2011, 47, 9714.
See also: (m) A. S. Dudnik, N. Chernyak, C. Huang and V. Gevorgyan,
Angew. Chem., Int. Ed., 2010, 49, 8729; (n) C. Huang, N. Chernyak, A.
S. Dudnik and V. Gevorgyan, Adv. Synth. Catal., 2011, 353, 1285;
(o) A. Kuznetsov and V. Gevorgyan, Org. Lett., 2012, 14, 914.
6 (a) S. Yamaguchi and K. Tamao, J. Chem. Soc., Dalton Trans., 1998,
3693; (b) J. Chen and Y. Cao, Macromol. Rapid Commun., 2007, 28,
1714; (c) X. Zhan, S. Barlow and S. R. Marder, Chem. Commun., 2009,
1948; (d) J. Liu, J. W. Y. Lam and B. Z. Tang, J. Inorg. Organomet.
Polym. Mater., 2009, 19, 249.
ation from
E furnishes 3-silyl-1-benzosilole 5 with the
regeneration of the Rh(I) catalyst.
In conclusion, we have developed an intramolecular trans-bis-
silylation of alkynes catalysed by rhodium(I) complexes, which
affords 3-silyl-1-benzosiloles with different functionalities at the
2-position. Although we have suggested a possible mechanism
for the trans-bis-silylation, further work needs to be directed
towards validating the mechanistic hypothesis.
7 (a) M. Suginome, A. Matsumoto and Y. Ito, J. Org. Chem., 1996, 61,
4884; (b) M. Suginome, A. Takama and Y. Ito, J. Am. Chem. Soc., 1998,
120, 1930.
8 trans-Bis-silylation failed to occur when the tether length was increased
by one carbon. For example, 2-[2-(phenylethynyl)phenoxy]disilane (1b)
led to the formation of the identical five-membered cis-bis-silylation
product 3b in both rhodium and palladium catalysts
Acknowledgements
This work was supported by a Grant-in-Aid for Scientific
Research for Young Scientist (B) (No. 23750115) from the Min-
istry of Education, Culture, Sports, Science and Technology,
Japan.
.
Notes and references
9 Palladium-catalyzed reaction of 4 gave four-membered ring products via
cis-bis-silylation. See ESI.†.
1 For reviews, see: (a) I. Beletskaya and C. Moberg, Chem. Rev., 2006,
106, 2320; (b) M. Suginome, T. Matsuda, T. Ohmura, A. Seki and
M. Murakami, in Comprehensive Organometallic Chemistry III, ed. R.
Crabtree and D. M. P. Mingos, Elsevier, Oxford, 2007, vol. 10, ch. 16,
pp. 725–787; (c) H. E. Burks and J. P. Morken, Chem. Commun., 2007,
4717; (d) C. Pubill-Ulldemolins, A. Bonet, C. Bo, H. Gulyás and
E. Fernández, Org. Biomol. Chem., 2010, 8, 2667.
2 For theoretical studies, see: (a) M. Hada, Y. Tanaka, M. Ito,
M. Murakami, H. Amii, Y. Ito and H. Nakatsuji, J. Am. Chem. Soc.,
1994, 116, 8754; (b) S. Sakaki and T. Kikuno, Inorg. Chem., 1997, 36,
226; (c) Q. Cui, D. G. Musaev and K. Morokuma, Organometallics,
1998, 17, 742.
10 (a) R. S. Tanke and R. H. Crabtree, J. Am. Chem. Soc., 1990, 112, 7984;
(b) I. Ojima, N. Clos, R. J. Donovan and P. Ingallina, Organometallics,
1990, 9, 3127; (c) B. M. Trost and Z. T. Ball, J. Am. Chem. Soc., 2001,
123, 12726; (d) B. M. Trost and Z. T. Ball, J. Am. Chem. Soc., 2003,
125, 30; (e) L. W. Chung, Y.-D. Wu, B. M. Trost and Z. T. Ball, J. Am.
Chem. Soc., 2003, 125, 11578; (f) Y. Miyake, E. Isomura and M. Iyoda,
Chem. Lett., 2006, 35, 836; (g) V. S. Sridevi, W. Y. Fan and W. K. Leong,
Organometallics, 2007, 26, 1157; (h) M. V. Jiménez, J. J. Pérez-Torrente,
M. I. Bartolomé, V. Gierz, F. J. Lahozand and L. A. Oro, Organometal-
lics, 2008, 27, 224, and references therein.
11 R. H. Crabtree, New J. Chem., 2003, 27, 771.
3 For mechanistic studies, see: (a) M. Murakami, T. Yoshida, S. Kawanami
and Y. Ito, J. Am. Chem. Soc., 1995, 117, 6408; (b) F. Ozawa, J. Organo-
met. Chem., 2000, 611, 332; (c) T. Sagawa, K. Ohtsuki, T. Ishiyama and
F. Ozawa, Organometallics, 2005, 24, 1670.
4 (a) B. L. Chenard and C. M. Van Zyl, J. Org. Chem., 1986, 51, 3561;
(b) T. Hayashi, H. Yamashita, T. Sakakura, Y. Uchimaru and M. Tanaka,
12 For bis(silyl)rhodium(III) species, see: (a) M. Okazaki, S. Ohshitanai,
H. Tobita and H. Ogino, J. Chem. Soc., Dalton Trans., 2002, 2061;
(b) K. Osakada, K. Hataya, Y. Nakamura, M. Tanaka and T. Yamamoto,
J. Chem. Soc., Chem. Commun., 1993, 576; (c) M. J. Auburn and S.
R. Stobart, Inorg. Chem., 1985, 24, 318; (d) Y. Sunada, Y. Fujimura and
H. Nagashima, Organometallics, 2008, 27, 3502.
This journal is © The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 3175–3177 | 3177