J. Mravljak, A. Obreza / Tetrahedron Letters 53 (2012) 2234–2235
2235
R
OH OH
OH
O
O
HO
a
HO
5
N
OH
O
O
a
OH
O
NH
HO
O
OH
O
OH
O
c
(CH2)nCH3
n = 6, 8, 10, 12, 14
11
1
R = H
b
Scheme 3. Reagents and conditions: (a) NH2OH (5.6 equiv), pyridine, 40 °C, 48 h
(11a, 43%; 11b, 64%; 11c, 65%; 11d, 76%; 11e, 68%).
2
R = (CH2)nCH3
n = 7, 9, 11, 13, 15
tionalities, at C-10 and C-60. Compounds with only one oxime group
at position C-10 were prepared directly from 5 as shown in Scheme
3.18
In conclusion, we have synthesized new amphiphilic oximes of
galactose 4 and glucosamines 10 and 11 from inexpensive starting
materials. These compounds may lead to a new group of sugar-
based excipients combining amphiphilic (surfactants) and antioxi-
dant properties. Some of these are under technological investiga-
tion as potential antioxidants for semi-solid pharmaceutical
formulations.
(CH2)nCH3
O
O
HO
OH OH
O
d
N
H3C(H2C)n
HO
OH
OH OH
OH
OH
4
3
Scheme 1. Reagents and conditions: (a) acetone, CuSO4 (2.4 equiv), H2SO4
(0.35 equiv), rt, 24 h, then Ba(OH)2 (0.35 equiv), (1, 72%); (b) CH3(CH2)nBr (n = 7,
9, 11, 13, 15; 1.5 equiv), NaH (1.5 equiv), 15-Crown-5 (0.02 equiv), imidazole
(0.01 equiv), 1,4-dioxane, 0 °C ? rt, 24 h (2a, 41%; 2b, 65%; 2c, 65%; 2d, 55%; 2e,
45%); (c) 75% TFA, H2O, 0 °C ? rt, 1.5 h (3a, 84%; 3b, 90%; 3c, 95%; 3d, 92%; 3e, 97%);
(d) NH2OH (5 equiv), pyridine, 40 °C, 48 h (4a, 52%; 4b, 68%; 4c, 72%; 4d, 71%; 4e,
70%).
Acknowledgments
This work was supported by the Ministry of Higher Education,
Science and Technology of the Republic of Slovenia. The authors
thank Professor Roger Pain for critical reading of the manuscript.
OR
OH
O
O
a
HO
HO
HO
HO
OH
OH
NH
Supplementary data
NH2
O
c
(CH2)nCH3
R = H
Supplementary data (experimental procedures and data for rep-
resentative new compounds) associated with this article can be
5
b
6
R = CPh3
References and notes
OR
O
1. Worek, F.; Thiermann, H.; Szinicz, L.; Eyer, P. Biochem. Pharmacol. 2004, 68,
2237–2248.
2. (a) DeLima Portella, R.; Barcelos, R. P.; de Bem, A. F.; Carratu, V. S.; Bresolin, L.;
da Rocha, J. B.; Soares, F. A. Life Sci. 2008, 83, 878–885; (b) da Silva, A. P.; Farina,
M.; Franco, J. L.; Dafre, A. L.; Kassa, J.; Kuca, K. Neurotoxicology 2008, 29, 184–
189.
3. Puntel, G. O.; Gubert, P.; Peres, G. L.; Bresolin, L.; Rocha, J. B.; Pereira, M. E.;
Carratu, V. S.; Soares, F. A. Arch. Toxicol. 2008, 82, 755–762.
4. Gosenca, M.; Obreza, A.; Pecar, S.; Gasperlin, M. AAPS PharmSciTech 2010, 11,
1485–1492.
5. Peterson, K. E.; Cinelli, M. A.; Morrell, A. E.; Mehta, A.; Dexheimer, T. S.; Agama,
K.; Antony, S.; Pommier, Y.; Cushman, M. J. Med. Chem. 2011, 54, 4937–4953.
6. Sridhar, M.; Narsaiah, C.; Raveendra, J.; Kondal Reddy, G.; Kishore Kumar
Reddy, M.; China Ramanaiah, B. Tetrahedron Lett. 2011, 52, 4701–4704.
7. Kapuriya, N.; Kapuriya, K.; Dodia, N. M.; Lin, Y.-W.; Kakadiya, R.; Wu, C.-T.;
Chen, C.-H.; Naliapara, Y.; Su, T.-L. Tetrahedron Lett. 2008, 49, 2886–2890.
8. Wang, K.; Qian, X.; Cui, J. Tetrahedron 2009, 65, 10377–10382.
9. Kitamoto, D.; Morita, T.; Fukuoka, T.; Konishi, M.-A.; Imura, T. Curr. Opin. Colloid
Interf. Sci. 2009, 14, 315–328.
O
O
e
AcO
AcO
AcO
AcO
OAc
NH
OAc
NH
O
O
(CH2)nCH3
(CH2)nCH3
f
9
7
R = CPh3
d
8
R = H
OH
OH
HO
N
N
OH
OH NH
O
(CH2)nCH3
n = 6, 8, 10, 12, 14
10. Cosima, S. Curr. Opin. Colloid Interf. Sci. 2001, 6, 160–170.
10
ˇ
11. (a) Hafner, A.; Hrast, M.; Pecar, S.; Mravljak, J. Tetrahedron Lett. 2009, 50, 564–
ˇ
566; (b) Mravljak, J.; Pecar, S. Tetrahedron Lett. 2009, 50, 567–569.
Scheme 2. Reagents and conditions: (a) CH3(CH2)nCOCl (n = 6, 8, 10, 12, 14;
1.1 equiv), NaHCO3 (2 equiv), H2O, 1,4-dioxane, rt, 24 h (5a, 54%; 5b, 36%; 5c, 54%;
5d, 55%; 5e, 60%); (b) Ph3CCl (1.7 equiv), DMAP (0.05 equiv), pyridine, 75 °C, 2 h; (c)
Ac2O (6 equiv), pyridine, 0 °C ? rt, 12 h (7a, 50% from 5a; 7b, 42% from 5b; 7c, 52%
from 5c; 7d, 46% from 5d; 7e, 41% from 5e); (d) FeCl3 (2 equiv), H2O, CH2Cl2, rt, 2 h
(8a, 44%; 8b, 55%; 8c, 56%; 8d, 53%; 8e, 67%); (e) DMP (1.2 equiv), CH2Cl2, rt, 1.5 h,
then work-up with Na2S2O3(aq) (9a, 49%; 9b, 62%; 9c, 84%; 9d, 82%; 9e, 75%); (f)
NH2OH (7 equiv), EtOH, 40 °C, 48 h (10a, 99%; 10b, 76%; 10c, 84%; 10d, 81%; 10e,
86%).
12. Burkart, M. D.; Vincent, S. P.; Düffels, A.; Murray, B. W.; Ley, S. V.; Wong, C.-H.
Bioorg. Med. Chem. 2000, 8, 1937–1946.
13. (a) Bault, P.; Gode, P.; Goethals, G.; Goodby, J. W.; Haley, J. A.; Kelly, S. M.; Mehl,
G. H.; Ronco, G.; Villa, P. Liquid Crystals 1998, 24, 283–293; (b) Bault, P.; Bachir,
S.; Spychala, L.; Godé, P.; Gérard, G.; Martin, P.; Ronco, G.; Villa, P. Carbohydr.
Polym. 1998, 37, 299–310.
14. Fieser, M.; Fieser, L. F.; Toromanoff, E.; Hirata, Y.; Heymann, H.; Tefft, M.;
Bhattacharya, S. J. Am. Chem. Soc. 1956, 78, 2825–2832.
15. (a) Bazito, R.; El Seoud, O. J. Surfact. Deterg. 2001, 4, 395–400; (b) Bazito, R. C.;
ElSeoud, O. A. Carbohydr. Res. 2001, 332, 95–102.
16. Ding, X.; Wang, W.; Kong, F. Carbohydr. Res. 1997, 303, 445–448.
17. Le Corre, L.; Gravier-Pelletier, C.; Le Merrer, Y. Eur. J. Org. Chem. 2007, 2007,
5386–5394.
18. Luchansky, S. J.; Yarema, K. J.; Takahashi, S.; Bertozzi, C. R. J. Biol. Chem. 2003,
278, 8035–8042.
forms, as the aldehyde and geminal diol; the ratio was determined
by NMR spectroscopy. Both compounds reacted with hydroxyl-
amine in pyridine to yield the final products with two oxime func-