H. Heuclin, S. Carenco, X.-F. Le Goff, N. Mézailles
FULL PAPER
[2]
[3]
a) M. E. van der Boom, D. Milstein, Chem. Rev. 2003, 103,
1759–1792; b) W. Leis, H. A. Mayer, W. C. Kaska, Coord.
Chem. Rev. 2008, 252, 1787–1797; c) J. Choi, A. H. R Mc Ar-
thur, M. Brookhart, A. S. Goldman, Chem. Rev. 2011, 111,
1761–1779.
ether (3 mL), and dried. Yellow complex 6 was extracted with tolu-
ene after the removal of LiCl (198 mg, 94%). 31P{1H} NMR
(C6D6): δ = 36.1 (d, JRhP = 5 Hz) ppm. 1H NMR (C6D6): δ = 7.92–
7.83 (m, 8 H, Harom), 6.85–6.78 (m, 12 H, Harom), 4.14 (br. s, 4 H,
CH of COD), 1.84–1.72 (m, 4 H, CH2 of COD), 1.79 (bt, JPH
=
a) R. P. K. Babu, R. McDonald, R. G. Cavell, Organometallics
2000, 19, 3462–1465; b) M. Valderrama, R. Contreras, V. Aran-
cibia, P. Muñoz, Inorg. Chim. Acta 1997, 255, 221–227; c) J.-C.
Tourneux, J.-C. Berthet, T. Cantat, P. Thuéry, N. Mézailles, M.
Ephritikhine, J. Am. Chem. Soc. 2011, 133, 6162–6165; d) G.
Aharonian, K. Feghali, S. Gambarotta, G. P. A. Yap, Organo-
metallics 2001, 20, 2616–2622; e) P. Wei, D. W. Stephan, Orga-
nometallics 2002, 21, 1308–1310; f) C. Bibal, M. Pink, Y. D.
Smurnyy, J. Tomaszewski, K. G. Caulton, J. Am. Chem. Soc.
2004, 126, 2312–2313; g) M. Valderrama, R. Contreras, M. Ba-
scunan, S. Alegria, D. Boys, Polyhedron 1995, 14, 2239–2246;
h) C. Klemps, A. Buchard, R. Houdard, A. Auffrant, N. Me-
zailles, X. F. Le Goff, L. Ricard, L. Saussine, L. Magna, P.
Le Floch, New J. Chem. 2009, 33, 1748–1752; i) Y. Smurnyy,
C. Bibal, M. Pink, K. G. Caulton, Organometallics 2005, 24,
3849–3855; j) S. Al-Benna, M. J. Sarsfield, M. Thornton-Pett,
D. L. Ormsby, P. J. Maddox, P. Brès, M. Bochmann, J. Chem.
Soc., Dalton Trans. 2000, 4247–4257.
a) M. S. Hill, P. B. Hitchcock, J. Organomet. Chem. 2004, 689,
3163–3167; b) A. Kasani, R. McDonald, R. G. Cavell, Organo-
metallics 1999, 18, 3775–3777; c) J. Browning, G. W. Bushnell,
K. R. Dixon, R. W. Hilts, J. Organomet. Chem. 1992, 434, 241–
252; d) A. Davison, D. L. Reger, Inorg. Chem. 1971, 10, 1967–
1970; e) J. Browning, K. R. Dixon, R. W. Hilts, Organometallics
1989, 8, 552–554; f) T. K. Panda, P. W. Roesky, P. Larsen, S.
Zhang, C. Wickleder, Inorg. Chem. 2006, 45, 7503–7508; g)
M. S. Hill, P. B. Hitchcock, J. Chem. Soc., Dalton Trans. 2002,
4694–4702; h) M. S. Hill, P. B. Hitchcock, Dalton Trans. 2003,
570–574; i) S. Marks, R. Koppe, T. K. Panda, P. W. Roesky,
Chem. Eur. J. 2010, 16, 7096–7100; j) S. Marks, T. K. Panda,
P. W. Roesky, Dalton Trans. 2010, 39, 7230–235.
a) C. Bibal, Y. D. Smurnyy, M. Pink, K. G. Caulton, J. Am.
Chem. Soc. 2005, 127, 8944–8945; b) M. Fang, N. D. Jones,
R. Lukowski, J. Tjathas, M. J. Ferguson, R. G. Cavell, Angew.
Chem. 2006, 118, 3169; Angew. Chem. Int. Ed. 2006, 45, 3097–
3101; c) M. W. Avis, K. Vrieze, H. Kooijman, N. Veldman,
A. L. Spek, C. J. Elsevier, Inorg. Chem. 1995, 34, 4092–4105; d)
P. Imhoff, R. van Asselt, J. M. Ernsting, K. Vrieze, C. J. Elsev-
ier, W. J. J. Smeets, A. L. Spek, A. P. M. Kentgens, Organome-
tallics 1992, 12, 1523–1536; e) M. W. Avis, M. E.
van der Boom, C. J. Elsevier, W. J. J. Smeets, A. L. Spek, J. Or-
ganomet. Chem. 1997, 527, 263–276; f) J. Browning, G. W.
Bushnell, K. R. Dixon, A. Pidcock, Inorg. Chem. 1983, 22,
2226–2228; g) D. E. Berry, J. Browning, K. R. Dixon, R. W.
Hilts, A. Pidcock, Inorg. Chem. 1992, 31, 1479–1487; h) A. La-
guna, M. Laguna, A. Rojo, M. N. Fraile, J. Organomet. Chem.
1986, 315, 269–276; i) M. C. Gimeno, A. Laguna, M. Laguna,
F. Sanmartin, P. G. Jones, Organometallics 1993, 12, 3984–
3991; j) C. J. Elsevier, P. Imhoff, Phosphorus Sulfur Silicon Re-
lat. Elem. 1990, 49–50, 405–408; k) P. Imhoff, C. J. Elsevier, J.
Organomet. Chem. 1989, 361, C61–C65; l) M. Fang, N. D.
Jones, K. Friesen, G. Lin, M. J. Ferguson, R. McDonald, R.
Lukowski, R. G. Cavell, Organometallics 2009, 28, 1652–1665.
a) M. Gandelman, D. Milstein, Chem. Commun. 2000, 1603–
1604; b) E. Poverenov, M. Gandelman, L. J. W. Shimon, H.
Rozenberg, Y. Ben-David, D. Milstein, Organometallics 2005,
24, 1082–1090; c) B. Gnanaprakasam; D. Milstein, J. Am.
Chem. Soc. 2011, 133, 1682–1685.
2 Hz, 1 H, PCHP), 1.35–1.27 (m, 4 H, CH2 of COD) ppm. 13C
NMR (C6D6): δ = 137.7 (d, JPC = 90 Hz, Cquat), 131.0 (pseudo-t,
CHarom), 129.5 (s, CHarom), 127.2 (pseudo-t, CHarom), 80.3 (JRhC
= 12 Hz, CH of COD), 30 (s, CH2 of COD), 12.3 (td, JPC = 93,
JRhC = 4 Hz, PCHP) ppm.
Synthesis of 7: To a solution of 6 (100 mg, 0.15 mmol) in THF was
added 2,6-dimethylphenyl isocyanide (39.8 mg, 0.30 mmol). The
solution immediately went from orange to red. It was left to stir
for 15 min at room temperature and concentrated to ca. 0.5 mL.
Petroleum ether (5 mL) was added, which allowed the precipitation
of a yellow solid that was extracted by centrifugation and washed
twice with petroleum ether (117 mg, 96%). 31P{1H} NMR ([D8]-
1
toluene): δ = 54 (br. s) ppm. H NMR ([D8]toluene): δ = 7.83 (br.
s, 8 H, Harom), 7.12 (br. s, 12 H, Harom), 7.02–6.90 (singlets, Harom
isocyanides), 2.58 (td, JRhH = 1.5, JPH = 8 Hz, PCHP), 2.14 (s, 12
H, CH3 isocyanides) ppm. 13C NMR ([D8]toluene): δ = 160 (d,
JRhC = 69 Hz, CN), 137.1 (dd, JPC = 4, JPC = 75 Hz, Cipso), 134.8
[s, C(CH3) isocyanide], 132.9 (d, JPC = 11 Hz, Cortho), 130.8 (d, JPC
= 4 Hz, Cpara), 128.4 (s, Cmeta isocyanide), 128.0 (d, JPC = 12 Hz,
Cmeta), 127.5 (s, Cpara isocyanide), 19.5 (s, CH3 isocyanide), 6.2 (m,
PCHP) ppm. C43H39N2P2RhS2 (812.77): calcd. C 63.54, H 4.84;
found C 63.25, H 4.92.
[4]
Synthesis of 8: To a solution of 6 (100 mg, 0.15 mmol) in THF was
added CO with a balloon for 5 min. The solution immediately went
from orange to brown. It was left to stir for 15 min at room tem-
perature and dried under vacuum to isolate a brown solid (77 mg,
85%). 31P{1H} NMR ([D8]toluene): δ = 62 (d, JRhP = 10 Hz) ppm.
1H NMR ([D8]toluene): δ = 7.74–7.62 (m, 8 H, Harom), 7.18–6.87
(m, 12 H, Harom), 2.68 (td, JRhH = 1.8, JPH = 8 Hz, PCHP) ppm.
13C NMR ([D8]toluene): δ = 185.6 (d, JRhC = 70 Hz, CO), 135.2
(dd, JPC = 4, JPC = 76 Hz, Cipso), 132.2 (d, JPC = 11 Hz, Cmeta),
131.8 (d, JPC = 3 Hz, Cpara), 128.5 (d, JPC = 13 Hz, Cortho), 0.0 (m,
PCHP) ppm. C27H21O2P2RhS2 (606.43): calcd. C 53.47, H 3.49;
found C 53.40, H 3.67.
[5]
CCDC-847285 (for 1), -847286 (for 1–·Li+), -847287 (for 3),
-847288 (for 4), -847289 (for 5), -847290 (for 6), and -847291 (for
7) contain the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_requ-
est/cif.
Supporting Information (see footnote on the first page of this arti-
cle): Crystallographic details, computational details for calcula-
tions, view of computed structures, Cartesian coordinates and the
three lowest frequencies for each optimized structure.
Acknowledgments
[6]
[7]
The authors thank the Centre National de la Recherche Sci-
entifique (CNRS) and the Ecole Polytechnique for the financial
support of this work. H. H. is thankful to the Ecole Polytechnique
for a graduate fellowship. S. C. is thankful to the Direction
Générale de l’Armement (DGA) for graduate fellowship.
T. Cantat, N. Mezailles, L. Ricard, Y. Jean, P. Le Floch, Angew.
Chem. 2004, 116, 6542; Angew. Chem. Int. Ed. 2004, 43, 6382–
6385.
[8]
[9]
M. Blug, H. Heuclin, T. Cantat, X. F. Le Goff, N. Mézailles,
P. Le Floch, Organometallics 2009, 28, 1969–1972.
R. D. Holmes-Smith, R. D. Osei, S. R. Stobart, J. Chem. Soc.,
Perkin Trans. 1 1983, 861–866.
[1] a) C. J. Moulton, B. L. Shaw, J. Chem. Soc., Dalton Trans.
1976, 1020–1024; b) D. J. Morales-Morales, C. M. Jensen, The
Chemistry of Pincer Compounds, Elsevier, Amsterdam, 2007.
1460
www.eurjic.org
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2012, 1453–1461