ORGANIC
LETTERS
2012
Vol. 14, No. 7
1900–1901
Preparation of Trifluoromethyl-
Substituted Aziridines with in Situ
Generated CF3CHN2
€
Stefan A. Kunzi, Bill Morandi, and Erick M. Carreira*
Laboratorium fu€r Organische Chemie, ETH Zu€rich, CH-8093 Zu€rich, Switzerland
Received March 2, 2012
ABSTRACT
Direct access to trifluoromethyl-substituted aziridines through the use of a protocol in which trifluoromethyl diazomethane is generated in situ and
subsequently undergoes addition to activated imines is reported.
Fluorinated units are important for drug discovery
because of their ability to influence physical properties of
drug candidates.1 Consequently, there is a need for the
discovery of efficient methods to prepare fluorinated
building blocks. In line with previous work from our group
dealing with the preparation of trifluoromethyl-substi-
tuted fragments using in situ generated trifluoromethyl
diazomethane,2 we report herein the development of an
aza-Darzens reaction involving activated imines and tri-
fluoromethyl diazomethane generated in situ that affords
valuable functionalized trifluoromethylated aziridines.
The aza-Darzens is one of the most direct routes for the
preparation of aziridines.3 In this respect, the use of diazo
alkanes as nucleophiles in combination with a variety of
Brønsted or Lewis acidsascatalysts or reagentshave found
widespread use.4 Despite the rich literature on aziridine
preparation, few examples of trifluoromethyl-substituted
aziridines syntheses can be found, and these display limited
substrate scope or involve the implementation of multistep
synthesis sequences.5
Scheme 1. Strategies for Trifluoromethyl Aziridine Preparation
(1) (a) Smart, B. E. J. Fluorine Chem. 2001, 109, 3. (b) Isanbor, C.;
O’Hagan, D. J. Fluorine Chem. 2006, 127, 303. (c) Muller, K.; Faeh, C.;
Diederich, F. Science 2007, 317, 1881. (d) Purser, S.; Moore, P. R.;
Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(2) (a) Morandi, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50,
9085. (b) Morandi, B.; Cheang, J.; Carreira, E. M. Org. Lett. 2011, 13,
3080. (c) Morandi, B.; Mariampillai, B.; Carreira, E. M. Angew. Chem.,
Int. Ed. 2011, 50, 1101. (d) Morandi, B.; Carreira, E. M. Angew. Chem.,
Int. Ed. 2010, 49, 4294. (e) Morandi, B.; Carreira, E. M. Angew. Chem.,
Int. Ed. 2010, 49, 938. (f) Morandi, B.; Carreira, E. M. Org. Lett. 2011,
13, 5984. (g) Morandi, B; Carreira, E. M. Science 2012, 335, 1471.
(3) Sweeney, J. Eur. J. Org. Chem. 2009, 4911.
(4) For Lewis acid promoted reactions, see: (a) Casarrubios, L.;
Perez, J. A.; Brookhart, M.; Templeton, J. L. J. Org. Chem. 1996, 61,
8358. For Brønstedt acid promoted reactions, see: (b) Williams, A. L.;
Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 1612. (c) Mukherjee, M.;
Gupta, A. K.; Lu, Z.; Zhang, Y.; Wulff, W. D. J. Org. Chem. 2010, 75,
5643. (d) Akiyama, T.; Suzuki, T.; Mori, K. Org. Lett. 2009, 11, 2445.
Two distinct strategies are possible as a means of acces-
sing trifluoromethyl-substituted aziridines from imines
and diazocompounds employing the aza-Darzens reaction
(Scheme 1). The first one, reported by Akiyama and co-
workers in 2003, involves the use of trifluoroacetaldehyde
N,O-acetal 1 and a collection of diazoketones or ester
€
(5) (a) Akiyama, T.; Ogi, S.; Fuchibe, K. Tetrahedron Lett. 2003, 44,
4011. (b) Colantoni, D.; Fioravanti, S.; Pellacani, L.; Tardella, P. A.
Org. Lett. 2004, 6, 197. (c) Maeda, R.; Ooyama, K.; Anno, R.; Shiosaki,
M.; Azema, T.; Hanamoto, T. Org. Lett. 2010, 12, 2548. (d) Khomutov,
O. G.; Filyakova, V. I.; Pashkevich, K. I. Russ. Chem. Bull. 1994, 43, 261.
ꢀ
ꢀ
ꢀ
(e) Crousse, B.; Narizuka, S.; Bonnet-Delpon, D.; Begue, J.-P. Synlett
2001, 679. (f) Spanneda, M. V.; Crousse, B.; Narizuka, S.; Bonnet-
ꢀ
ꢀ
Delpon, D.; Begue, J.-P. Collect. Czech. Chem. Commun. 2002, 67, 1359.
r
10.1021/ol300539e
Published on Web 03/28/2012
2012 American Chemical Society