coupling could be applied to efficiently obtain propargy-
lamines and oxazolidinones.12
Table 1. Optimization of the Conditionsa
During recent years, the three-component coupling of
an aldehyde, an alkyne, and an amine (A3-coupling) has
received much attention,13 especially employing a tandem
A3-coupling reaction.14 Recently, Ji and co-workers re-
ported a gold-catalyzed direct alkyne-amine-glyoxylic acid
coupling, intramolecular cyclization for the formation of
polysubstituted butenolides in a tandem manner (Scheme 1,
eq 1).15 Based on this report and our previous work on
decarboxylative three-component couplings (eq 2), we
envisaged the possibility of a decarboxylative coupling of
glyoxylic acid, an amine, and an alkyne to synthesize
3-amino-1,4-enynes (eq 3), which are valuable intermedi-
ates for the preparation of useful and unusual carbocyclic
products via cycloisomerization.16
CuX (mol %)/
ligand (mol %)
2a/3a
time
yieldb
(%)
entry
(mmol)
(min)
1
2
3
4
5
6
7
CuBr(30)/none
CuBr(30)/none
1:3
1:5
1:6
1:6
1:6
1:6
1:6
30
30
30
30
30
30
30
50
65
68
84
71
55
39
CuBr(30)/none
CuBr(30)/PPh3(30)
CuBr(30)/TOTP(30)
CuBr(30)/TFP(30)
CuBr(30)/
DPEPhos(30)
8
CuBr(30)/DPPF(30)
CuBr(30)/DPPB(30)
CuBr (30)/DPPP(30)
CuBr (30)/
1:6
1:6
1:6
1:6
30
30
30
30
72
60
65
53
9
Scheme 1
10
11
10-Phenanthroline (30)
CuBr(15)/PPh3(30)
CuBr (30)/PPh3(60)
CuBr(40)/PPh3(40)
CuBr(30)/PPh3(30)
CuBr(30)/PPh3(30)
CuBr(30)/PPh3(30)
CuBr(30)/PPh3(30)
CuBr(30)/PPh3(30)
12
1:6
1:6
1:6
1:6
1:6
1:6
1:6
1:6
30
30
30
30
30
20
45
24 h
72
77
73
79
74
80
73
67
13
14
15c
16d
17
18
19e
a Reactions were performed using 1 (0.55 mmol), 2a (0.5 mmol), 3a,
and toluene (1 mL) under microwave irradiation at 110 °C and 80 W
maximum power. b Isolated yields based on 2a. c Reaction carried out at
130 °C. d Reaction carried out at 95 °C. e Conventional heating. TOTP =
Tri-ortho-tolylphosphine. TFP = Tri-(2-furyl)-phosphine. DPPF =
Bis(diphenylphosphino)ferrocene. DPPB = 1,4-Bis(diphenylphosphino)-
butane. DPEPhos = Bis(2-diphenyl-phosphinophenyl)ether. DPPP = 1,3-
Bis(diphenylphosphino) propane.
In our initial investigations, employing glyoxylic acid 1,
N-methylbenzylamine 2a, and phenylacetylene 3a as mod-
el substrates, we evaluated the efficiency of various sol-
vents and copper catalysts under microwave irradiation
without ligands. From the results, we found that toluene is
the solvent of choice, and CuBr seemed to be the most
effective for the formation of the 3-amino-1,4-enynes 4a.17
Furtherinspection of the reactionparameters revealedthat
the ratio of substrates 2a/3a significantly affects the yield.
A 1:6 ratio provided the best result (Table 1, entries 1ꢀ3).
Encouraged by these findings, we subsequently evaluated
the influence of the application of ligands. To our delight,
when a combination of CuBr and PPh3 was used, 3-amino-
1,4-enyne 4a was obtained in 84% yield (Table 1, entry 4).
Thus, a variety of ligands were examined, but all of them
failed to further improve the yields (Table 1, entries 5ꢀ11).
Regarding the ratio of CuBr to the PPh3 ligand, we found
that when using 30% of both additives the highest yield
was obtained (Table 1, entries 4 and 12ꢀ14). Further
screening of the reaction temperature and reaction time
showed that increasing either the temperature or the
reaction time resulted in a decreased yield (Table 1, entries
15 and 18), while the reaction at a lower temperature or in a
shorter reaction period afforded 4a in 74% and 80% yield
(12) (a) Feng, H. D.; Ermolat’ev, D. S.; Song, G. H.; Van der Eycken,
E. V. J. Org. Chem. 2011, 76, 7608. (b) Feng, H. D.; Ermolat’ev, D. S.;
Song, G. H.; Van der Eycken, E. V. Adv. Synth. Catal. 2012, 354, 505.
(13) (a) Wei, C. M.; Li, Z. G.; Li, C. J. Synlett 2004, 1472. (b) Li, C. J.;
Wei, C. M. Chem. Commun. 2002, 268. (c) Yoo, W. J.; Zhao, L.; Li, C. J.
Aldrichimica Acta 2011, 44, 43. (d) Gommermann, N.; Koradin, K.;
Polborn, K.; Knochel, P. Angew. Chem., Int. Ed. 2003, 42, 5763. (e)
Sakaguchi, S.; Mizuta, T.; Furuwan, M.; Kubo, T.; Ishii, Y. Chem.
Commun. 2004, 1638. (f) Sakaguchi, S.; Kubo, T.; Ishii, Y. Angew.
Chem., Int. Ed. 2001, 40, 2534. (g) Gommermann, N.; Knochel, P.
Chem.;Eur. J. 2006, 12, 4380. (h) Peshkov, V. A.; Pereshivko, O. P.;
Van der Eycken, E. V. Chem. Soc. Rev. 2012, DOI: 10.1039/
C2CS15356D.
(14) (a) Bariwal, J. B.; Ermolat’ev, D. S.; Van der Eycken, E. V.
Chem.;Eur. J. 2010, 16, 3281. (b) Chernyak, N.; Gevorgyan, V. Angew.
Chem., Int. Ed. 2010, 49, 2743. (c) Suzuki, Y.; Ohta, Y.; Oishi, S.; Fujii,
N.; Ohno, H. J. Org. Chem. 2009, 74, 4246. (d) Yan, B.; Liu, Y. H. Org.
Lett. 2007, 9, 4323.
(15) Zhang, Q.; Cheng, M.; Hu, X. Y.; Li, B. G.; Ji, J. X. J. Am. Chem.
Soc. 2010, 132, 7256.
(16) (a) Shi, X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. 2005,
127, 5802. (b) Prasad, B. A. B.; Yoshimoto, F. K.; Sarpong, R. J. Am.
Chem. Soc. 2005, 127, 12468. (c) Marion, N.; Dıez-Gonzalez, S.; De
Fremont, P.; Noble, A. R.; Nolan, S. P. Angew. Chem., Int. Ed. 2006, 45,
3647. (d) Buzas, A.; Gagosz, F. J. Am. Chem. Soc. 2006, 128, 12614. (e)
Vasu, D.; Das, A.; Liu, R. S. Chem. Commun. 2010, 46, 4115. (f) Sato, T.;
Onuma, T.; Nakamura, I.; Terada, M. Org. Lett. 2011, 13, 4992.
(17) See the Supporting Information for details.
Org. Lett., Vol. 14, No. 7, 2012
1943