redox-independent process, it is ideally suited for the
detoxification of phenolics in anaerobic organisms,10,11
which represents a biocatalytic equivalent to the Kolbeꢀ
Schmitt reaction,6 which requires pressurized CO2 and
elevatedtemperatures(120ꢀ300°C)and oftensuffersfrom
incomplete regioselectivities.
Although the biodegradation of phenolic compounds
via carboxylation by whole microbial cells is reasonably
well understood,11b the respective enzymes were predomi-
nantly investigated for their (downhill) decarboxylation
activities.12 In contrast, only limited data are available on
the enzymatic carboxylation of (hetero)aromatics using
(de)carboxylases running in the reverse (synthetic)
direction:
was also able to convert phenol, 1,2-dihydroxyben-
zene, and m-aminophenol at very low rates.20
(iv) In contrast to the carboxylases mentioned above,
which strictly depend on the presence of a phenolic
functional group in the substrate, electron-excess
heteroaromatic species (e.g., pyrrole, indole) were
carboxylated at position 2 or 3, respectively, by
pyrrole-2- carboxylate decarboxylase (max. con-
version 80%21) and indole-3-carboxylase (max.
conversion 34%22) (Scheme 1). Unfortunately, both
enzymes appear to be highly substrate specific and
only tolerate minimal structural variations.
(i) p-Carboxylation of phenol yielding p-hydroxyben-
zoic acid is catalyzed by phenylphosphate
carboxylase,11b,13 which requires activation of the
substrate by (energy-consuming) phosphorylation
with ATP prior to carboxylation. In contrast, 4-
hydroxybenzoate decarboxylase was found to cata-
lyze the direct (reverse) carboxylation of phenol at a
slow rate14 (max. conversion 19%15).
(ii) The regio-complementary o-carboxylation of phenol
was catalyzed by salicylic acid decarboxylase with a
respectable conversion of 27%.16 Most interestingly,
the carboxylation of m-aminophenol selectively gave
the antituberculostatic agent p-aminosalicylic acid
with 70% conversion.17
(iii) 1,2-Dihydroxybenzene (catechol) was selectively
carboxylated at the o-position by 3,4-dihydroxy-
benzoate decarboxylase in up to 28% conversion.18
The 1,3-analog (resorcinol) was carboxylated at the
2-position by 2,6-dihydroxybenzoate decarboxylase
in up to 48% conversion.19 Although the enzyme was
completely regioselective on its ’natural’ substrate, it
Scheme 1. Regio-complementary Enzymatic Carboxylation of
Phenols and Hydroxystyrene Derivatives
In addition to the benzoic acid (de)carboxylases dis-
cussed above, which catalyze the carboxylation of an
aromatic system, phenolic acid decarboxylases23 act on
the side chain of hydroxycinnamic acids yielding styrenes.
The reverse carboxylation activity of the latter enzymes is
unknown. Based on the limited structural data available to
date, both types of enzymes act through completely dif-
ferent mechanisms: Whereas benzoic acid decarboxylases
are metal-dependent and requireacatalyticallyactiveZn2þ
in the active site,24 the mechanism of phenolic acid de-
carboxylases proceeds via general (metal-independent)
acidꢀbase catalysis.25
In order to ensure the practical applicability of the
enzymatic carboxylation, we avoided oxygen-sensitive
enzymes13a,14a,14b,15 and thus selected (de)carboxylases,
which are known to be oxygen-stable.
(11) (a) Brackmann, R.; Fuchs, G. Eur. J. Biochem. 1993, 213, 563–
571. (b) Boll, M.; Fuchs, G. Biol. Chem. 2005, 386, 989–997. (c) Gobson,
J.; Harwood, C. S. Annu. Rev. Microbiol. 2002, 56, 345–369. (d)
Ackermann, L. Angew. Chem., Int. Ed. 2011, 50, 3842–3844.
(12) Liu, A.; Zhang, H. Biochemistry 2006, 45, 10407–10411.
(21) (a) Wieser, M.; Yoshida, T.; Nagasawa, T. J. Mol. Catal. B:
Enzym. 2001, 11, 179–184. (b) Wieser, M.; Fujii, N.; Yoshida, T.;
Nagasawa, T. Eur. J. Biochem. 1998, 257, 495–499. (c) Wieser, M.;
Yoshida, T.; Nagasawa, T. Tetrahedron Lett. 1998, 39, 4309–4310.
(22) Yoshida, T.; Fujita, K.; Nagasawa, T. Biosci. Biotechnol. Bio-
chem. 2002, 66, 2388–2394.
(23) These enzymes are also denoted as hydroxycinnamic acid de-
carboxylase, ferulic acid decarboxylase, or p-coumaric acid decarbox-
ylase. (a) Rodriguez, H.; Landete, J. M.; Curiel, J. A.; de las Rivas, B.;
Mancheno, J. M.; Munoz, R. J. Agric. Food Chem. 2008, 56, 3068–3072.
(b) Zago, A.; Degrassi, G.; Bruschi, C. V. Appl. Environ. Microbiol. 1995,
61, 4484–4486. (c) Cavin, J.-F.; Barthelmebs, L.; Divies, C. Appl.
Environ. Microbiol. 1997, 63, 1939–1944. (d) Gu, W.; Li, X.; Huang,
J.; Duan, Y.; Meng, Z.; Zhang, K.-Q.; Yang, J. Appl. Microbiol.
Biotechnol. 2011, 89, 1797–1805. (e) Prim, N.; Pastor, F. I. J.; Diaz, P.
Appl. Microbiol. Biotechnol. 2003, 63, 51–56.
(24) Goto, M.; Hayashi, H.; Miyahara, I.; Hirotsu, K.; Yoshida, M.;
Oikawa, T. Crystal structures of nonoxidative Zn-dependent 2,6-dihy-
droxybenzoate (γ-resorcylate) decarboxylase from Rhizobium sp. strain
Mtp-10005, pdb accession number entry 2DVT_A.
(25) (a) Matte, A.; Grosse, S.; Bergeron, H.; Abokitse, K.; Lau,
P. C. K. Acta Crystallogr., Sect. F 2010, F66, 1407–1414. (b) Gu, W.;
Yang, J.; Lou, Z.; Liang, L.; Sun, Y.; Huang, J.; Li, X.; Cao, Y.; Meng,
Z.; Zhang, K.-Q. PLoS ONE 2011, 6, e16262, DOI: 10.1371/journal.
pone.0016262. (c) Rodriguez, H.; Angulo, I.; de las Rivas, B.; Campillo,
N.; Paez, J. A.; Munoz, R.; Mancheno, J. M. Proteins 2010, 78, 1662–
1676.
(13) (a) Aresta, M.; Quaranta, E.; Liberio, R.; Dileo, C.; Tommasi, I.
Tetrahedron 1998, 54, 8841–8846. (b) Dibenedetto, A.; Lo Noce, R.;
Pastore, C.; Aresta, M.; Fragale, C. Environ. Chem. Lett. 2006, 3, 145–
€
148. (c) Schuhle, K.; Fuchs, G. J. Bacteriol. 2004, 186, 4556–4567.
(14) (a) Liu, J.; Zhang, X.; Zhou, S.; Tao, P.; Liu, J. Curr. Microbiol.
2007, 54, 102–107. (b) He, Z.; Wiegel, J. Eur. J. Biochem. 1995, 229, 77–
82. (c) Lupa, B.; Lyon, D.; Shaw, L. N.; Sieprawska-Lupa, M.; Wiegel, J.
Can. J. Microbiol. 2008, 54, 75–81.
(15) Matsui, T.; Yoshida, T.; Hayashi, T.; Nagasawa, T. Arch.
Microbiol. 2006, 186, 21–29.
(16) Kirimura, K.; Gunji, H.; Wakayama, R.; Hattori, T.; Ishii, Y.
Biochem. Biophys. Res. Commun. 2010, 394, 279–284.
(17) Kirimura, K.; Yanaso, S.; Kosaka, S.; Koyama, K.; Hattori, T.;
Ishii, Y. Chem. Lett. 2011, 40, 206–208.
(18) (a) He, Z.; Wiegel, J. J. Bacteriol. 1996, 178, 3539–3543. (b)
Yoshida, T.; Inami, Y.; Matsui, T.; Nagasawa, T. Biotechnol. Lett. 2010,
32, 701–705.
(19) This enzyme is also termed γ-resorcylate decarboxylase. (a)
Yoshida, M.; Fukuhara, N.; Oikawa, T. J. Bacteriol. 2004, 186, 6855–
6863. (b) Ishii, Y.; Narimatsu, Y.; Iwasaki, Y.; Arai, N.; Kino, K.;
Kirimura, K. Biochem. Biophys. Res. Commun. 2004, 324, 611–620. (c)
Yoshida, T.; Hayakawa, Y.; Matsui, T.; Nagasawa, T. Arch. Microbiol.
2004, 181, 391–397.
(20) (a) Iwasaki, Y.; Kino, K.; Nishide, H.; Kirimura, K. Biotechnol.
Lett. 2007, 29, 819–822. (b) Matsui, T.; Yoshida, T.; Yoshimura, T.;
Nagasawa, T. Appl. Microbiol. Biotechnol. 2006, 73, 95–102.
Org. Lett., Vol. 14, No. 8, 2012
1975