B. V. Subba Reddy et al. / Bioorg. Med. Chem. Lett. 22 (2012) 2460–2463
2463
Table 2
Cytotoxic study of products 3a–o
S. No.
Product (3)
MDA-MB 231 (
lM)
SK-N-SH (lM)
A549 (
l
M)
MRC5 (lM)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
3a
3b
3c
3d
3e
3f
3g
3h
3i
3j
3k
3l
3m
3n
3o
Isatin
>100
0.90 0.06
0.94 0.04
0.94 0.06
0.98 0.04
0.98 0.03
0.99 0.03
9.6 0.72
0.93 0.10
1.31 0.08
1.32 0.24
1.28 0.01
1.23 0.11
>100
1.23 0.030
0.89 0.037
0.97 0.127
0.75 0.04
0.92 0.06
7.90 0.26
8.91 0.17
0.96 0.4
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
>100
99.42 7.5
99.14 5.5
>100
>100
9.98 0.31
>100
9.95 0.32
10.00 0.18
>100
9.99 0.20
10.05 0.34
>100
10.00 0.13
>100
>100
>100
76.3 0.7
69.4 0.264
>100
71.5 0.751
>100
13.5 0.3
>100
15.07 0.13
9.9 0.24
1.04 0.14
9.84 0.16
1.78 0.42
0.97 0.03
Indole
Standard (Doxorubicin)
>100
8.14 0.14
15.58 0.35
14.84 0.25
Meraj, S.; Prasad, A. R. Synthesis 2006, 4121; (f) Praveen, C.; Sagayaraj, Y. W.;
Perumal, P. T. Tetrahedron Lett. 2009, 50, 644.
the biological pathways that are affected by these compounds spe-
cifically in cancer cells and not in normal cell lines.
10. (a) Togo, H.; Iida, S. Synlett 2006, 2159; (b) Lin, X.-F.; Cui, S.-L.; Wang, Y.-G.
Tetrahedron Lett. 2006, 47, 4509; (c) Chen, W.-Y.; Lu, J. Synlett 2005, 1337; (d)
Royer, L.; De, S. K.; Gibbs, R. A. Tetrahedron Lett. 2005, 46, 4595; (e) Banik, B. K.;
Fernandez, M.; Alvarez, C. Tetrahedron Lett. 2005, 46, 2479; (f) Wang, S.-Y.
Synlett 2004, 2642; (g) Bandgar, B.-P.; Shaikh, K.-A. Tetrahedron Lett. 2003, 44,
1959; (h) Ko, S.; Sastry, M. N. V.; Lin, C.; Yao, C.-F. Tetrahedron Lett. 2005, 46,
5771.
11. (a) Yadav, J. S.; Reddy, B. V. S.; Hashim, S. R. J. Chem. Soc., Perkin Trans. 1 2000,
3082; (b) Yadav, J. S.; Reddy, B. V. S.; Premalatha, K.; Swamy, T. Tetrahedron
Lett. 2005, 46, 2687; (c) Yadav, J. S.; Reddy, B. V. S.; Rao, C. V.; Chand, P. K.;
Prasad, A. R. Synlett 2001, 1638; (d) Yadav, J. S.; Reddy, B. V. S.; Reddy, M. S.;
Prasad, A. R. Tetrahedron Lett. 2002, 43, 9703.
In summary, we have developed a novel method for the synthesis
of di(indolyl)indolin-2-one derivatives by means of a coupling of
isatin with indoles using a catalytic amount of molecular iodine un-
der mild conditions. This method is simple and convenient to pre-
pare a wide range of di(indolyl)indolin-2-one derivatives which
are found to possess strong cytotoxicity against only cancer cell
lines and not normal ones. This provides a platform for further
development of these compounds into promising anticancer agents.
12. General procedure: To a stirred solution of isatin (1 mmol) and indole (2 mmol)
in dry dichloromethane (4 mL) was added molecular iodine (26 mg, 10 mol %)
at room temperature. The resulting mixture was stirred at room temperature
for the appropriate time (Table 1). After complete conversion, as indicated by
TLC, the reaction mixture was quenched by saturated sodium thiosulphate
solution (4 mL) and extracted with dichloromethane (3 ꢀ 10 mL). The
combined organic layers were dried over anhydrous Na2SO4, concentrated in
vacuo and purified by column chromatography on silica gel (Merck, 60–
120 mesh, ethyl acetate–hexane, 3:7) to afford the pure di(indolyl)indolin-2-
one. Spectral data for the selected products: 20-Methyl-3-(2-methyl-5-nitro-
1H-indol-3-yl)-70-nitro-3,30-biindolin-2-one (3b, Table 1): White solid, mp
340–342 °C; 1H NMR (500 MHz, DMSO): d 11.26 (d, 2H, J = 7.3 Hz), 10.5–10.6
(br s, 1H), 7.82 (d, 2H, J = 9.4 Hz), 7.75 (s, 1H), 7.61 (s, 1H) 7.29 (d, 2H,
J = 7.3 Hz), 7.26 (t, 1H, J = 7.3 Hz), 7.15 (d, 1H, J = 7.3 Hz), 7.03 (d, 1H, J = 7.3 Hz),
6.91 (t, 1H, J = 7.3 Hz), 2.10 (s, 3H), 2.01 (s, 3H); 13C NMR (300 MHz,
Acknowledgments
J. S. Yadav acknowledges the partial support by King Saudi
University for Global Research Network for Organic Synthesis
(GRNOS). A.A. thanks DBT, New Delhi for a research grant.
References and notes
1. (a) Sundberg, R. J. Indoles; Academic Press: San Diego, 1996; (b) Faulkner, D. J.
Nat. Prod. Rep. 2001, 18, 1; (c) Ninomiya, I. J. Nat. Prod. 1992, 55, 541.
2. (a) Joshi, K. C.; Pathak, V. N.; Jain, S. K. Pharmazie 1980, 35, 677; (b) Pajouhesh,
H.; Parsons, R.; Popp, F. D. J. Pharm. Sci. 1983, 72, 318; (c) Pope, F. D. J.
Heterocycl. Chem. 1984, 21, 1641.
3. Garrido, F.; Ibanez, J.; Gonalons, E.; Giraldez, A. Eur. J. Med. Chem. 2004, 47,
1882.
4. Natarajan, A.; Fan, Y.-H.; Chen, H.; Guo, Y.; Iyasere, J.; Harbinski, F.; Christ, W. J.;
Aktas, H.; Halperin, J. A. J. Med. Chem. 2004, 47, 1884.
CDCl3 + DMSO):
126.2, 126.0, 125.1, 121.4, 116.3, 116.1, 115.3, 115.2, 111.9, 111.5, 110.3, 109.8,
12.95, 12.9; IR (KBr):
3325, 3238, 1690, 1472, 1328 cmꢁ1; ESI (MS): m/z: 499
(M+NH4); 504(M+Na); HRMS calcd for C26H19N3O5Na: 504.1260, found,
d 178.23, 141.0, 140.0, 135.1, 137.1, 136.6, 133.4, 128.1,
m
504.1283.
Methyl
30-(5-(methoxycarbonyl)-1H-indol-3-yl)-20-oxo-3,30-
biindoline-7-carboxylate (3d, Table 1): White solid, mp 255–2570°C; 1H NMR
(500 MHz, DMSO): d 10.92–10.96 (br s, 2H), 10.11–10.55 (br s, 1H), 8.08 (s, 2H),
7.69 (d, 2H, J = 8.5 Hz), 7.35 (d, 2H, J = 8.5 Hz), 7.19 (t, 2H, J = 8.5 Hz), 7.02 (d,
1H, J = 7.6 Hz), 6.94 (d, 2H, J = 1.9 Hz), 6.91 (t, 1H, J = 7.6 Hz), 3.78 (s, 6H); 13C
NMR (300 MHz, CDCl3 + DMSO): d 178.3, 167.1, 141.2, 139.6, 133.7, 128.3,
126.2, 125.0, 124.7, 123.5, 122.1, 121.7, 119.9, 115.6, 111.7, 109.8, 51.6, 52.3;
5. (a) Bell, R.; Carmeli, S.; Sar, N. J. Nat. Prod. 1994, 57, 1587; (b) Osawa, T.; Namiki,
M. Tetrahedron Lett. 1983, 2, 4719.
6. Hong, C.; Firestone, G. L.; Bjeldanes, L. F. Biochem. Pharmacol. 2002, 63, 1085.
7. (a) Witkop, B.; Arvin, E. K. J. Am. Chem. Soc. 1951, 73, 5664; (b) Sarel, S.; Klug, J.
T. Israel J. Chem. 1964, 2, 143; (c) Seno, M.; Shiraishri, S.; Suzuki, Y.; Asahara, T.
Bull. Chem. Soc. Jpn. 1978, 51, 1413; (d) Flemming, I.; Loreto, M. A.; Wallace, I. H.
M.; Michael, J. P. J. Chem. Soc., Perkin Trans. 1 1986, 349.
IR (KBr):
m
3335, 3236, 1700, 1615, 1270, 1122 cmꢁ1; ESI (MS): m/z: 497
(M+NH4); 502(M+Na); HRMS calcd for C28H21N3O5Na: 502.1358, found:
502.1378. 70-Nitro-3-(5-nitro-1H-indol-3-yl)-3,30-biindolin-2-one (3f, Table
1): White solid, mp 350–352 °C; 1H NMR (500 MHz, DMSO): d 11.27–11.39
(br s, 2H), 10.5–10.7 (br s, 1H), 8.31 (s, 2H), 7.93 (d, 2H, J = 8.3 Hz), 7.43 (d, 2H,
J = 8.3 Hz), 7.23 (d, 2H, J = 7.3 Hz), 7.10 (s, 2H), 7.06 (d, 2H, J = 7.3 Hz), 6.96 (t,
1H, J = 7.3 Hz); 13C NMR (300 MHz, CDCl3 + DMSO): d 177.7, 140.8, 139.9,
132.6, 128.3, 127.9, 124.6, 124.3, 121.8, 117.2, 116.4, 112.1, 109.8, 59.4, 51.7,
8. (a) Bergman, J.; Eklund, N.
. Tetrahedron 1980, 36, 1445; (b) Azizian, J.;
Mohammadi, A. A.; Karimi, A. R.; Mohammadizadeh, M. R. . J. Chem. Res. Synop.
2004, 6, 424.
9. (a) Hewawasam, P.; Gribkoff, V. K.; Pendri, Y.; Dworetzky, S. I.; Meanwell, N. A.;
Martinez, E.; Boissard, C. G.; Post-Munson, D. J.; Trojnacki, J. T.; Yeleswaram, K.;
Pajor, L. M.; Knipe, J.; Gao, Q.; Perrone, R.; Starrett, J. E., Jr. Bioorg. Med. Chem.
Lett. 2002, 12, 1023; (b) Nicolaou, K. C.; Bella, M.; Chen, D. Y.-K.; Huang, X.;
Ling, T.; Snyder, S. A. Angew. Chem., Int. Ed. 2002, 41, 3495; (c) Klumpp, A. A.;
Yeung, K. Y.; Surya Prakash, G. K.; Olah, G. A. J. Org. Chem. 1998, 63, 4481; (d)
Kobayashi, M.; Aoki, S.; Gato, K.; Matsunami, K.; Kurosu, M.; Kitagawa, I. . Chem.
Pharm. Bull. 1994, 42, 2449; (e) Yadav, J. S.; Reddy, B. V. S.; Gayathri, K. U.;
20.4, 13.7; IR (KBr):
m 3325, 3238, 1690, 1245, 1127; ESI(MS): m/z:
471(M+NH4); 476 (M+Na); HRMS calcd for C24H15N5O5Na: 476.099, found:
476.097.
13. Myadaraboina, S.; Alla, M.; Saddanapu, V.; Bommena, V. R.; Addlagatta, A. Eur.
J. Med. Chem. 2010, 45, 5208.