T. Sugaya, H. Ishida, K. Gomi and M. Kasai, J. Med. Chem., 1996, 39,
3461.
6 B. Havsteen, Biochem. Pharmacol., 1983, 32, 1141–1148.
7 J. Shin, K. Kim, M. Kim, J. Jeong and B. Kim, Bioorg. Med. Chem.
Lett., 1999, 9, 869–874.
8 R. K. Sutradhar, A. K. M. M. Rahman, M. U. Ahmad and S. C. Bachar,
Phytochem. Lett., 2008, 1, 179–182.
9 L. Dhooghe, S. Maregesi, I. Mincheva, D. Ferreira, J. P. J. Marais,
F. Lemière, A. Matheeussen, P. Cos, L. Maes, A. Vlietinck, S. Apers and
L. Pieters, Phytochemistry, 2010, 71, 785–791.
10 (a) E. Awuah and A. Capretta, Org. Lett., 2009, 11, 3210–3213;
(b) B. Liang, M. Huang, Z. You, Z. Xiong, K. Lu, R. Fathi and Z. Yang,
J. Org. Chem., 2005, 70, 6097–6100; (c) N. Ahmed, H. Ali and J. Van
Lier, Tetrahedron Lett., 2005, 46, 253–256; (d) R. Ramajayam,
R. Guiridhar, M. Yadav, E. De Clerq and D. Prajapati, Med. Chem. Res.,
2005, 14, 475–487; (e) H. Miao and Z. Yang, Org. Lett., 2000, 2, 1765–
1768; (f) L. W. McGarry and M. Detty, J. Org. Chem., 1990, 55 (14),
4349–4354; (g) L. Woods and J. Sapp, J. Org. Chem., 1964, 29, 3445–
3447; (h) W. Baker, J. Chem. Soc., 1933, 1381.
11 (a) P. Da Re, L. Verlicchi and I Setnikar, J. Org. Chem., 1960, 25, 1097–
1100; (b) S. Redy, P. Sreenivas, R. Jayaprakash and G. Krupadanam,
ARKIVOC, 2009, XIII, 55–65; (c) K. N. Rao and G. Srimannarayana,
Heterocycles, 1987, 26 (2), 319–323; (d) N. Yao, A. Song, X. Wang,
S. Dixon and K. Lam, J. Comb. Chem., 2007, 9, 668–676; (e) K. Dahlén,
E. Wallén, M. Grotli and K. Luthman, J. Org. Chem., 2006, 71, 6863–
6871; (f) M. Smith, L. Klebanoff, C. Morrow and B. Sandel, J. Org.
Chem., 1982, 47, 1702–1706; (g) A. Costa, F. Dean, M. Jones and
R. Varma, J. Chem. Soc., Perkin Trans. 1, 1985, 799; (h) M. Detty and
R. McGarry, J. Org. Chem., 1988, 53, 1203–1207; (i) L. W. McGarry and
M. Detty, J. Org. Chem., 1990, 55 (14), 4349–4354; ( j) C. Wang,
X. Zheng, W. Meng, H. Li and F. Qing, Tetrahedron Lett., 2005, 46,
5399–5402; (k) W. Adam, E. Gogonas and L. Hadjiarapoglou, Tetrahe-
dron, 2003, 59, 7929–7934; (l) Y. Joo, J. Kim, S. Kang, M. Noh, J. Ha,
J. Choi, J. Lim, C. Lee and S. Chung, Bioorg. Med. Chem. Lett., 2003,
13, 413–417; (m) M. Pal, R. Dakarapu, K. Parasuraman, V. Subramanian
and K. Yeleswarapu, J. Org. Chem., 2005, 70, 7179–7187.
12 (a) C. Ollivier and P. Renaud, Chem. Rev., 2001, 101, 3415;
(b) H. Yorimitsu and K. Oshima, in Radicals in Organic Synthesis, ed. P.
Renaud and M. Sibi, Wiley-VCH, Weinheim, 2001; (c) M. P. Sibi and T.
R. Rheault, in Radicals in Organic Synthesis, ed. P. Renaud and
M. P. Sibi, Wiley-VCH, Weinheim, 2001, Vol. 1, p. 461.
13 (a) B. Quiclet-Sire and S. Z. Zard, Chem.–Eur. J., 2006, 12, 6002;
(b) B. Quiclet-Sire and S. Z. Zard, Top. Curr. Chem., 2006, 264, 201;
(c) S. Z. Zard, in Radicals in Organic Synthesis, ed. P. Renaud and
M. Sibi, Wiley VCH, Weinhem, 2001, p. 90; (d) S. Z. Zard, Angew.
Chem., Int. Ed. Engl., 1997, 36, 672; (e) B. Quiclet-Sire and S. Z. Zard,
Pure Appl. Chem., 1997, 69, 645; (f) S. Z. Zard, Actual. Chim., 1993, 3,
10.
Scheme 2 Synthesis of the flavone–testosterone conjugated 31.
the direct substitution of an alkyl functionality at the vinylic and
unactivated C–H bonds of the C ring of the flavone, under for-
mally neutral conditions. It is important to mention that in most
cases the moderate yields of 3-alkyl flavones did not originate
from a lack of selectivity of the radical addition as indicated by
the considerable amount of recovered starting material. We then
turned our attention to establish that this direct regioselective
radical alkylation may be useful to covalently join flavones with
other synthetic or natural platforms, giving access to more
complex flavone–conjugate scaffolds in the search for enhanced
or diverse biological activities. Accordingly, we were pleased to
find that the testosterone-derived xanthate 30 (see ESI† for the
synthesis) reacted with the flavone 12d and afforded the flavone–
testosterone conjugate 31, albeit in a modest 35% yield
(Scheme 2).
Conclusions
We have developed a convenient synthesis that affords C-3-sub-
stituted flavones in moderate yields through a process that
involves an intermolecular oxidative radical alkylation. To the
best of our knowledge, the synthetic utility of free radicals with
flavones has not been explored previously. This direct method
offers preparative advantages over the established synthesis of
such substituted flavones since it provides a good variety of pro-
ducts and allows the use of mild conditions with great selectivity.
Results presented herein could be useful for accessing the syn-
thesis of naturally occurring 3-alkyl flavones (i.e., apigeninyl-
(I-3,II-3)-naringenin 5) and flavone–conjugate scaffolds. It is
interesting that the flavone’s natural tendency to trap radicals (as
the antioxidant molecules they are) has not been applied for
organic synthesis.20
14 For examples of related oxidative processes using dilauroyl peroxide see:
(a) T. R. Ibarra-Rivera, R. Gamez-Montano and L. D. Miranda, Chem.
Commun., 2007, 3485–3487; (b) Y. M. Osornio, R. Cruz-Almanza,
V. Jimenez-Montano and L. D. Miranda, Chem. Commun., 2003, 2316–
2317; (c) F. Gagosz and S. Z. Zard, Org. Lett., 2002, 4, 4345;
(d) L. Miranda and S. Z. Zard, Org. Lett., 2002, 4, 1135–1138. 12
(e) T. Kaoudi, B. Quiclet-Sire, S. Seguin and S. Z. Zard, Angew. Chem.,
Int. Ed., 2000, 39, 732; (f) J. Axon, L. Boiteau, J. Boivin, J. E. Forbes
and S. Z. Zard, Tetrahedron Lett., 1994, 35, 1719; (g) A. Liard,
B. Quiclet-Sire, R. N. Saicic and S. Z. Zard, Tetrahedron Lett., 1997, 38,
1759; (h) N. Cholleton and S. Z. Zard, Tetrahedron Lett., 1998, 39, 7295;
(i) T.-M. Ly, B. Quiclet-Sire, B. Sortais and S. Z. Zard, Tetrahedron Lett.,
1999, 40, 2533.
We thank CONACYT (J-50922, 82643) for generous financial
support and Dr Joseph M. Muchowski for many helpful discus-
sions. We also thank H. Rios, R. Patiño, J. Pérez, L. Velasco,
N. Zavala, E. Huerta, I. Chavez, A. Peña, S. Hernádez and
A. Toscano for technical support.
15 K. H. Kumar and P. T. Perumal, Tetrahedron, 2007, 63, 9531–9535.
16 E. Flórez-López, L. B. Gomez-Pérez and L. D. Miranda, Tetrahedron
Lett., 2010, 51, 6000–6002.
Notes and references
17 Microwave reactions were conducted using a CEM Discover Synthesis™
Unit (CEM Corp., Matthews, NC). http://www.cem.com/page176.html
18 For isolation see: E. Maldonado, E. Hernández and A. Ortega,
Phytochemistry, 1992, 31, 1413–1414. For dimethylations process see:
H.-W. Chu, H.-T. Wu and Y.-J. Lee, Tetrahedron, 2004, 60, 2647–2655.
19 Isolated from Salvia herbacea, see also: A. Bisio, G. Romussi,
G. Ciarallo and N. Tommasi, Pharmazie, 1997, 52, 330–331. For tri-
methylations process see: H.-W. Chu, H.-T. Wu and Y.-J. Lee, Tetrahe-
dron, 2004, 60, 2647–2655.
1 (a) A. K. Verma and R. Pratap, Nat. Prod. Rep., 2010, 27, 1571–1593;
(b) O. M. Andersen and K. R. Markham, Flavonoids: Chemistry, Bio-
chemistry, and Applications, CRC Press, Boca Raton, FL, 2006;
(c) S. Martens and A. Mithofer, Phytochemistry, 2005, 66, 2399–2407.
2 M. Marder and A. C. Paladini, Curr. Top. Med. Chem., 2002, 2, 853.
3 J. A. Manthey, K. Grohmann and N. Guthrie, Curr. Med. Chem., 2001, 8,
135.
4 A. Fournet and V. Muñoz, Curr. Top. Med. Chem., 2002, 2, 1215.
5 (a) M. Cárdenas, M. Marder, V. C. Blank and L. P. Roguin, Bioorg. Med.
Chem., 2006, 14, 2966, and references therein (b) T. Akama, Y. Shida,
20 E. T. Oganesyan, Y. A. Maltsev and D. E. Tvorovskii, Russ. J. Gen.
Chem., 2001, 71 (6), 939–944.
This journal is © The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 2946–2949 | 2949