2 M. Albrecht, Chem. Rev., 2001, 101, 3457–3498.
Similarly, a full understanding of the gem-dimethyl effect on this
complicated multi-step self-assembly cannot be reached at this
point.
3 M. Albrecht and S. Kotila, Angew. Chem., 1995, 107, 2285–2287;
M. Albrecht and S. Kotila, Angew. Chem., Int. Ed. Engl., 1995, 34,
2134–2137.
Similar to M213 and M223 complexes, the M233 helicates also
have a strong absorption around 500 nm and their molar extinc-
tion coefficients are usually greater than 105 M−1 cm−1 (ESI†).
Compared to proligand 3-H2, both the major band around
500 nm and relatively weak band around 320 nm of the helicates
are significantly more intense.
In summary, unlike the methylene-linked ligand 2, the gem-
dimethyl-substituted ligand 3 led to predominant formation of
helicates with trivalent metals at room temperature. This suggests
that supramolecular self-assembly of such systems is a process
that is very sensitive not only to the length, location and rigidity
of a linker but to the degree of substitution on the linker carbon
as well. Thus all of these criteria need to be considered in the
future design of similar ligands in order to affect the stereoselec-
tivity of the self-assembly.
4 M. Albrecht, Chem.–Eur. J., 2000, 6, 3485–3489.
5 M. Albrecht, I. Janser, H. Houjou and R. Frohlich, Chem.–Eur. J., 2004,
10, 2839–2850.
6 J. Xu, T. N. Parac and K. N. Raymond, Angew. Chem., 1999, 111, 3055–
3058; J. Xu, T. N. Parac and K. N. Raymond, Angew. Chem., Int. Ed.,
1999, 38, 2878–2882.
7 Z. Zhang and D. Dolphin, Chem. Commun., 2009, 6931–6933.
8 S. Goetz and P. E. Kruger, Dalton Trans., 2006, 1277–1284.
9 Z. Zhang and D. Dolphin, Inorg. Chem., 2010, 49, 11550–11555.
10 R. M. Beesley, C. K. Ingold and J. F. Thorpe, J. Chem. Soc., 1915, 107,
1080–1106.
11 M. E. Jung and J. Piizzi, Chem. Rev., 2005, 105, 1735–1766.
12 P. G. Sammes and D. J. Weller, Synthesis, 1995, 1205–1222.
13 T.-Y. Luh and Z. Hu, Dalton Trans., 2010, 39, 9185–9192.
14 M.-Y. Yeh and T.-Y. Luh, Chem.–Asian J., 2008, 3, 1620–1624.
15 B. J. Littler, M. A. Miller, C. H. Hung, R. W. Wagner, D. F. O’Shea, P.
D. Boyle and J. S. Lindsey, J. Org. Chem., 1999, 64, 1391–1396.
16 S. M. Cohen and S. R. Halper, Inorg. Chim. Acta, 2002, 341, 12–16.
17 V. S. Thoi, J. R. Stork, D. Magde and S. M. Cohen, Inorg. Chem., 2006,
45, 10688–10697.
18 C. Bruckner, Y. J. Zhang, S. J. Rettig and D. Dolphin, Inorg. Chim. Acta,
1997, 263, 279–286.
Acknowledgements
19 P. A. Daugherty, J. Glerup, P. A. Goodson, D. J. Hodgson and
K. Michelson, Acta Chim., Scand., 1991, 45, 244–253.
20 J. F. Kirner and W. R. Scheidt, Inorg. Chem., 1975, 14, 2081–2086.
21 S. Mossin, H. O. Sorensen and H. Weihe, Acta Crystallogr., 2002, C58,
204–206.
22 S. Hazra, S. Naskar, D. Mishra, S. I. Gorelsky, H. M. Figgie,
W. S. Sheldrich and S. K. Chattopadhyay, Dalton Trans., 2007, 4143–
4148.
This work was supported by the Natural Sciences and Engineer-
ing Research Council (NSERC) of Canada. The authors thank
Dr. Brian Patrick in the X-ray crystallography lab of the Depart-
ment of Chemistry at UBC. The authors also thank the NMR
and mass spectroscopy labs of the Department of Chemistry at
UBC.
23 M. J. Frisch et al., Gaussian 03, Revision E.01, Gaussian, Inc., Walling-
ford CT, 2004.
24 The average linker C–C–C bond angles in Co223, Ga223, Fe233, Co233,
Mn233 and Ga233 helicates are 113.8°, 114.3°, 108.9°, 109.0°, 108.8°,
109.1°; the average linker bond lengths are 1.50 Å, 1.51 Å, 1.52 Å,
1.52 Å, 1.52 Å, 1.52 Å, respectively.
References
1 C. Piguet, G. Bernardinelli and G. Hopfgartner, Chem. Rev., 1997, 97,
2005–2062.
This journal is © The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 4751–4753 | 4753