References
1 (a) X. L. Hou, Z. Yang and H. N. C. Wong, Progress in Heterocyclic
Chemistry, ed. G. W. Gribble and T. L. Gilchrist, Pergamon Press,
Oxford, 2003, vol. 15, p. 167; (b) S. J. Cacchi, Appl. Organomet. Chem.,
1999, 576, 42; (c) B. A. Keay and P. W. Dibble, Comprehensive Hetero-
cyclic Chemistry II, ed. A. R. Katritzky, C. W. Rees and E. F. V. Scriven,
Elsevier Press, Oxford, 1997, vol. 2, p. 395.
2 (a) H.-K. Lee, K.-F. Chan, C.-W. Hui, H.-K. Yim, X.-W. Wu and
H. N. C. Wong, Pure Appl. Chem., 2005, 77, 139; (b) M. Maier, Organic
Synthesis Highlights II, ed. H. Waldmann, VCH Press, Weinheim, 1995,
p. 231; (c) B. H. Lipshuts, Chem. Rev., 1986, 86, 795.
3 For reviews, see: (a) X. L. Hou, Z. Yang, K.-S. Yeung and
H. N. C. Wong, Progress in Heterocyclic Chemistry, ed. G. W. Gribble
and J. Joule, Pergamon Press, Oxford, 2008, vol. 19, p. 176;
(b) S. F. Kirsch, Org. Biomol. Chem., 2006, 4, 2076; (c) B. A. Keay,
Chem. Soc. Rev., 1999, 28, 209; (d) T. L. Gilchrist, J. Chem. Soc., Perkin
Trans. 1, 1999, 2849.
4 (a) T. Yao, X. Zhang and R. C. Larock, J. Am. Chem. Soc., 2004, 126,
11164; (b) N. T. Patil, H. Wu and Y. Yamamoto, J. Org. Chem., 2005, 70,
4531; (c) T. Kawasaki, S. Saito and Y. Yamamoto, J. Org. Chem., 2002,
67, 2653; (d) N. T. Patil and Y. Yamamoto, J. Org. Chem., 2004, 69,
5139; (e) C. H. Oh, V. R. Reddy, A. Kim and C. Y. Rhim, Tetrahedron
Lett., 2006, 47, 5307; (f) X. Du, H. Chen and Y. Liu, Chem.–Eur. J.,
2008, 14, 9495; (g) X. Du, H. Chen, Y. Chen, J. Chen and Y. Liu,
Synlett, 2011, 1010.
Scheme 3 A proposed reaction pathway.
nucleophilic attack of H2O to the CvC double bond to give 5.
Next, elimination of AuOAr produces 6 or 7. Then 7 is activated
by the subsequent coordination of the alkynyl moiety to Au+
which enhances the electrophilicity of the triple bond,18 and
facilitates an intramolecular cyclization of the enol oxygen onto
the alkyne to afford 9. Protonation19 of 9 with regeneration of
the Au+ catalyst furnishes the desired furan 4.
In conclusion, we have shown that (E)-1-aryloxy-1-en-3-ynes
can be efficiently prepared by the Sonogashira coupling reaction
using 2-bromo-3-aryloxypropenoates and terminal alkynes. The
resulting (E)-1-aryloxy-1-en-3-ynes are successfully applied to
the synthesis of 2,4-disubstituted furans with an ester group at
C-4 position through Au/Ag-catalyzed annulation reaction. Aryl,
alkenyl and alkyl substituents on the acetylene terminus are com-
patible in the annulation reaction, furnishing the desired furans
in good to high yields. In this procedure, Au catalyzed two reac-
tions in one-pot, one is the hydrolysis reaction of (E)-1-aryloxy-
1-en-3-ynes, and the other is the subsequent O-cyclization
reaction. Further studies of these interesting (E)-1-aryloxy-1-en-
3-ynes to extend the synthetic utility in organic chemistry are in
progress in our group.
5 (a) Y. Liu, F. Song, Z. Song, M. Liu and B. Yan, Org. Lett., 2005, 7,
5409; (b) X. Du, F. Song, Y. Lu, H. Chen and Y. Liu, Tetrahedron, 2009,
65, 1839; (c) A. S. K. Hashmi, T. Haffner, M. Rudolph and F. Rominger,
Chem.–Eur. J., 2011, 17, 8195; (d) A. S. K. Hashmi, T. Haffner,
M. Rudolph and F. Rominger, Eur. J. Org. Chem., 2011, 667.
6 (a) T. Schwier, A. W. Sromek, D. M. L. Yap, D. Chernyak and
V. Gevorgyan, J. Am. Chem. Soc., 2007, 129, 9868; (b) A. S. Dudnik,
A. W. Sromek, M. Rubina, J. T. Kim, A. V. Kel’in and V. Gevorgyan,
J. Am. Chem. Soc., 2008, 130, 1440.
7 (a) B. Gabriele, G. Salerno and E. Lauria, J. Org. Chem., 1999, 64,
7687; (b) Y. Wakabayashi, Y. Fukuda, H. Shiragami, K. Utimoto and
H. Nozaki, Tetrahedron, 1985, 41, 3655.
8 (a) D. I. MaGee, J. D. Leach and S. Setiadji, Tetrahedron, 1999, 55,
2847.
9 (a) F. Liu, D. Qian, L. Li, X. Zhao and J. Zhang, Angew. Chem., Int. Ed.,
2010, 49, 6669; (b) P. Wipf, L. T. Rahman and S. R. Rector, J. Org.
Chem., 1998, 63, 7132.
10 (a) J. A. Marshall and E. D. Robinson, J. Org. Chem., 1990, 55, 3450;
(b) J. A. Marshall and X.-J. Wang, J. Org. Chem., 1991, 56, 960;
(c) J. A. Marshall, e. M. Wallace and P. S. Coan, J. Org. Chem., 1995,
60, 796; (d) A. S. K. Hashmi, T. L. Ruppert, T. Knofel and J. W. Bats,
J. Org. Chem., 1998, 62, 7295; (e) A. S. K. Hashmi and C. A. Sehon,
J. Org. Chem., 1995, 60, 5966; (f) A. S. K. Hashmi, J.-H. Choi and
J. W. Bats, J. Prakt. Chem., 1999, 341, 342; (g) A. S. K. Hashmi,
L. Schwarz and M. Bolte, Eur. J. Org. Chem., 2004, 1923;
(h) A. S. K. Hashmi, M. C. Blanco, D. Fischer and J. W. Bats,
Eur. J. Org. Chem., 2006, 1387; (i) A. S. K. Hashmi, T. M. Frost and
J. W. Bats, J. Am. Chem. Soc., 2000, 122, 11553–11554.
Experimental section
A typical procedure for the Au-catalyzed formation of ethyl 5-
phenylfuran-3-carboxylate
(E)-Ethyl 2-(phenoxymethylene)-4-phenylbut-3-ynoate (58 mg,
0.2 mmol), THF (2 mL), PPh3AuCl (2.0 mg, 2 mol%), AgOTf
(0.1 mL, 0.04 M in THF, 2 mol%) are added to a Schlenk tube.
The resulted solution was stirred at room temperature. After the
reaction was complete as monitored by thin-layer chromato-
graphy, the solvent was evaporated under the reduced pressure
and the residue was purified by chromatography on silica gel to
afford the 2,4-disubstituted furan derivatives 4a (33 mg, 76%) as
11 (a) A. S. K. Hashmi, L. Schwarz, J.-H. Choi and T. M. Frost, Angew.
Chem., Int. Ed., 2000, 39, 2285; (b) Y. Bai, J. Fang, J. Ren and Z. Wang,
Chem.–Eur. J., 2009, 15, 8975; (c) G. Zhang, X. Huang, G. Li and
L. Zhang, J. Am. Chem. Soc., 2008, 130, 1814.
12 For electrophilic cyclization to furans, see: (a) S. Mehat, J. P. Waldo and
R. C. Larock, J. Org. Chem., 2009, 74, 1141; (b) C.-H. Cho,
B. Neuenswander, G. H. Lushington and R. C. Larock, J. Comb. Chem.,
2008, 10, 941; (c) T. Okitsu, D. Nakazawa, R. Taniguchi and A. Wada,
Org. Lett., 2008, 10, 4967; (d) I. Aillaud, E. Bossharth, D. Conreaux,
P. Desbordes, N. Monteiro and G. Balme, Org. Lett., 2006, 8, 1113;
(e) G. Raffa, M. Rusch, G. Balme and N. Monteiro, Org. Lett., 2009, 11,
5254; (f) F. Manarin, J. A. Roehrs, R. M. Gay, R. Brandao,
P. H. Menezes, C. W. Nogueira and G. Zeni, J. Org. Chem., 2009, 74,
2153; (g) M. Jacubert, A. Tikad, O. Provot, A. Hamze, J.-D. Brion and
M. Alami, Eur. J. Org. Chem., 2010, 4492; (h) Z. Chen, G. Huang,
H. Jiang, H. Huang and X. Pan, J. Org. Chem., 2011, 76, 1134.
13 For transition metal-catalyzed annulations to furans, see: (a) L. Chen,
Y. Li and M.-H. Xu, Org. Biomol. Chem., 2010, 8, 3073;
(b) D. Conreaus, S. Belot, P. Desbordes, N. Monteiro and G. Balme,
J. Org. Chem., 2008, 73, 8619; (c) E. Bossharth, P. Desbordes,
N. Monteiro and G. Balme, Org. Lett., 2003, 5, 2441;
1
a yellow solid; m.p. 45 °C. H NMR (400 MHz, CDCl3, Me4Si)
δ 1.36 (t, J = 6.8 Hz, 3H), 4.33 (q, J = 7.2 Hz, 2H), 6.97 (s, 1H),
7.30–7.32 (m, 1H), 7.37–7.41 (m, 2H), 7.66–7.68 (m, 2H), 8.02
(s, 1H); 13C NMR (100.6 MHz, CDCl3, Me4Si) δ 14.28, 60.49,
104.44, 121.24, 123.97, 128.09, 128.73, 129.82, 146.67, 155.08,
163.10; HRMS (EI) for C13H12O3: calcd 216.0786, found
216.0787.
Acknowledgements
We thank the National Natural Science Foundation of China
(Grant No. 20872037) for financial support.
2964 | Org. Biomol. Chem., 2012, 10, 2960–2965
This journal is © The Royal Society of Chemistry 2012