Journal of the American Chemical Society
Article
transformations (ΔG6→2′ = (−)3.7 − (−)8.0 kcal/mol) indicate
the reversibility of the process, regardless of the nature of the
substituents on the nitrogen atoms. For each reaction, a
transition state TS6→2′ connecting directly 6 and 2′ and lying at
5.6, 6.3, and 2.7 kcal/mol above 6a, 6b, and 6c, respectively,
could be located on the potential energy surface (Figures 7 and
8 for geometrical parameters). The low energy barrier
associated with the reversibility of the reaction accounts for
the facile interconversion of [NHC(H)][HCO3] 2 into NHC−
CO2 2′ through the intermediacy of NHC 6. This is also
consistent with the fact that NHCs were not experimentally
observed; it may be assumed that these intermediate species
react very rapidly with CO2 or (H2O and CO2), yielding the
respective NHC−CO2 and [NHC(H)][HCO3] compounds,
which are in equilibrium.
ACKNOWLEDGMENTS
■
The authors are grateful to CNRS, Reg
Agence Nationale de la Recherche (ANR) - Programme Blanc
(CATAPULT Project) for financial support. Christelle Absalon
́
(Institut des Sciences Moleculaires, UMR 5255, Bordeaux) is
acknowledged for the MALDI-ToF MS and ESI MS experi-
ments. Brice Kauffmann (Chimie et Biologie des Membrames
et des Nanoobjets, UMR 5248, Bordeaux) is warmly acknowl-
edged for X-ray diffraction analysis. Part of the theoretical work
was granted access to HPC resources of Idris under allocation
2012 (i2012080045) made by GENCI (Grand Equipement
National de Calcul Intensif).
́
ion Aquitaine and to the
REFERENCES
■
(1) (a) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem.
Rev. 1999, 100, 39. (b) Herrmann, W. A. Angew. Chem., Int. Ed. 2002,
41, 1290. (c) Crabtree, R. H. Coord. Chem. Rev. 2007, 251, 595.
(d) Glorius, F. N-Heterocyclic Carbenes in CatalysisAn Introduc-
tion. N-Heterocyclic Carbenes in Transition Metal Catalysis; Springer:
Berlin/Heidelberg: 2007; Vol. 21, p 1. (e) Díez-Gonzal
N.; Nolan, S. P. Chem. Rev. 2009, 109, 3612. (f) Droge, T.; Glorius, F.
Angew. Chem., Int. Ed. 2010, 49, 6940.
(2) (a) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107,
CONCLUSION
■
Anion metathesis of imidazolium chlorides with KHCO3
provides a facile one step synthetic access to air stable
imidazol(in)ium hydrogen carbonates ([NHC(H)][HCO3]).
On the basis of experimental NMR results, it can be evidenced
that [NHC(H)][HCO3] compounds are in equilibrium in
solution with their NHC−CO2 adduct counterparts, depending
on the nature and water content of the solvent analysis. As
supported by DFT calculations, these precursors can serve as a
genuine source of NHCs in solution at RT, allowing an easy
transfer of the carbene fragment to an organic substrate (e.g.,
CS2) and to catalytically relevant transition metals (e.g., Pd,
Au). We also report for the first time that these [NHC(H)]-
[HCO3] salts efficiently serve as precatalysts in both metal-free
molecular and macromolecular syntheses, without any partic-
ular precautions of storage, as demonstrated by two selected
organocatalyzed reactions (benzoin condensation and ring-
opening polymerization of D,L-lactide). We postulate that the
free NHC is generated in solution at RT from its [NHC(H)]-
[HCO3] precursor by deprotonation of the imidazolium cation
and concomitant loss of H2O and CO2, via a concerted low
energy pathway, as substantiated by DFT calculations.
́
ez, S.; Marion,
̈
́
5606. (b) Marion, N.; Díez-Gonzalez, S.; Nolan, S. P. Angew. Chem.,
Int. Ed. 2007, 46, 2988. (c) Moore, J.; Rovis, T. Carbene Catalysts. In
Asymmetric Organocatalysis; List, B., Ed.; Springer: Berlin/Heidelberg:
2009; Vol. 291, p 77.
(3) (a) Kamber, N. E.; Jeong, W.; Waymouth, R. M.; Pratt, R. C.;
Lohmeijer, B. G. G.; Hedrick, J. L. Chem. Rev. 2007, 107, 5813.
(b) Kiesewetter, M. K.; Shin, E. J.; Hedrick, J. L.; Waymouth, R. M.
Macromolecules 2010, 43, 2093. (c) Raynaud, J.; Absalon, C.; Gnanou,
Y.; Taton, D. Macromolecules 2010, 43, 2814. (d) Raynaud, J.; Ottou,
W. N.; Gnanou, Y.; Taton, D. Chem. Commun. 2010, 46, 3203.
(e) Raynaud, J.; Liu, N.; Fevre, M.; Gnanou, Y.; Taton, D. Polym.
Chem. 2011, 2, 1706. (f) Coulembier, O.; Moins, S. b.; Dubois, P.
Macromolecules 2011, 44, 7493. (g) Shin, E. J.; Brown, H. A.;
Gonzalez, S.; Jeong, W.; Hedrick, J. L.; Waymouth, R. M. Angew.
Chem., Int. Ed. 2011, 50, 6388. (h) Shin, E. J.; Jeong, W.; Brown, H. A.;
Koo, B. J.; Hedrick, J. L.; Waymouth, R. M. Macromolecules 2011, 44,
2773.
(4) de Frem
253, 862.
́
ont, P.; Marion, N.; Nolan, S. P. Coord. Chem. Rev. 2009,
We believe that the straightforward access to such precursors,
which does not involve the generation of a free carbene at any
point of their synthesis, coupled with their air and moisture
stability both in the solid state and in solution should provide a
competitive alternative to masked NHCs on a large scale. This
opens avenues for practical use of these masked NHCs in
organometallic chemistry and in various NHC-catalyzed
molecular and macromolecular reactions.
(5) Bonnette, F.; Kato, T.; Destarac, M.; Mignani, G.; Cossío, F. P.;
Baceiredo, A. Angew. Chem., Int. Ed. 2007, 46, 8632.
(6) Arduengo Iii, A. J.; Calabrese, J. C.; Davidson, F.; Rasika Dias, H.
V.; Goerlich, J. R.; Krafczyk, R.; Marshall, W. J.; Tamm, M.;
Schmutzler, R. Helv. Chim. Acta 1999, 82, 2348.
(7) (a) Wanzlick, H.-W.; Esser, F.; Kleiner, H.-J. Chem. Ber. 1963, 96,
1208. (b) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett.
1999, 1, 953. (c) Denk, K.; Sirsch, P.; Herrmann, W. A. J. Organomet.
Chem. 2002, 649, 219. (d) Trnka, T. M.; Morgan, J. P.; Sanford, M. S.;
Wilhelm, T. E.; Scholl, M.; Choi, T.-L.; Ding, S.; Day, M. W.; Grubbs,
R. H. J. Am. Chem. Soc. 2003, 125, 2546. (e) Coulembier, O.; Dove,
A. P.; Pratt, R. C.; Sentman, A. C.; Culkin, D. A.; Mespouille, L.;
Dubois, P.; Waymouth, R. M.; Hedrick, J. L. Angew. Chem., Int. Ed.
2005, 44, 4964. (f) Csihony, S.; Culkin, D. A.; Sentman, A. C.; Dove,
A. P.; Waymouth, R. M.; Hedrick, J. L. J. Am. Chem. Soc. 2005, 127,
9079. (g) Coulembier, O.; Lohmeijer, B. G. G.; Dove, A. P.; Pratt,
R. C.; Mespouille, L.; Culkin, D. A.; Benight, S. J.; Dubois, P.;
Waymouth, R. M.; Hedrick, J. L. Macromolecules 2006, 39, 5617.
(8) Nyce, G. W.; Csihony, S.; Waymouth, R. M.; Hedrick, J. L.
Chem.Eur. J. 2004, 10, 4073.
ASSOCIATED CONTENT
■
S
* Supporting Information
1H and 13C NMR spectra of 2a−c and 4a, the molecular
structure, crystal data and structure refinement of 2a, and
Cartesian coordinates of all optimized structures with the
corresponding energies. This material is available free of charge
AUTHOR INFORMATION
■
Corresponding Author
(9) Blum, A. P.; Ritter, T.; Grubbs, R. H. Organometallics 2007, 26,
2122.
(10) Enders, D.; Breuer, K.; Raabe, G.; Runsink, J.; Teles, J. H.;
Melder, J.-P.; Ebel, K.; Brode, S. Angew. Chem., Int. Ed. Engl. 1995, 34,
1021.
Notes
The authors declare no competing financial interest.
6783
dx.doi.org/10.1021/ja3005804 | J. Am. Chem. Soc. 2012, 134, 6776−6784