protected β-glucoside 11L (53%). Sodium methoxide in
methanol removed the acetate protecting groups in 11L to
allow subsequent protection of the primary alcohol by
treatment with trityl chloride in pyridine in the presence of
DMAP to afford the diol 12L (57%). Esterification of
the free hydroxyl groups in 12L with triflic anhydride in
dichloromethane in the presence of pyridine afforded
the ditriflate 2L (83%) which with benzylamine in aceto-
nitrile underwent a highly efficient cyclization to produce
the bicyclic azetidine 1L in 86% yield. All attempts to get
the R-anomer of 2L to undergo a similar cyclization in a
significant yield were unsuccessful; further studies are in
progress to determine the propensity of similar anomeric
pyranose ditriflates to form azetidines. Hydrolysis of 1L
with aqueous hydrochloric acid in dioxane removed both
the trityl and anomeric protecting groups; reduction of the
crude lactol with sodium borohydride in methanol and
subsequent acetylation of the resulting triol with acetic
anhydride in pyridine afforded the triacetate 13L (70%),
allowing easy purification. Removal of the acetates from
13L by sodium methoxide in methanol gave 14L (100%);
subsequent transfer hydrogenation with ammonium for-
mate in anhydrous methanol in the presence of 10%
palladium on charcoal removed both benzyl groups from
Scheme 2. Synthesis of Azetidines 5L and 5Da
14L to form the target azetidine 5L17 {100%, [R]D þ15.5
25
(c 0.49, H2O) for the hydrochloride salt} in an overall
25
a
yield of 8% from 7L. The enantiomer 5D {[R]D ꢀ13.9 (c
* = yield for enantiomers prepared from 7D.
0.44, H2O) for the hydrochloride salt} was prepared by a
similar procedure in 22% overall yield from diacetone-D-
glucose 7D.
of 16D with tert-butyldimethylsilyl chloride in DMF gave
the silyl ether17D (94%), whichonesterification ofthe free
hydroxyl groups at C3 and C5 formed the ditriflate 3D
(98%). Reaction of the ditriflate 3D with benzylamine in
the presence of diisopropylethylamine (DIPEA) gave the
fused azetidine 4L (93%). Treatment of 4L with aqueous
trifluoroacetic acid removed both the silyl and isopropyli-
dene protecting groups; reduction of the resulting lactol
with sodium borohydride in water afforded a triol 19L,
which was isolated as the nonpolar triacetate 18L [68%
overall yield from4L]. Removal of theestersfrom 18L with
sodium methoxide in methanol gave 19L (98%), which on
hydrogenolysis of the N-benzyl group by transfer hydro-
The synthesis of 2,4-dideoxy-2,4-imino-L-iditol 6L, an
epimer of 5L, via azetidine ring formation between C3 and
C5 [Scheme 3], required initial epimerization of C3 in
diacetone glucose 7D to the allose 15D.18 Selective removal
of the exocyclic acetonide in 15D by hydrolysis with
aqueous acetic acid afforded the triol 16D (81%). Reaction
(15) (a) D’Alonzo, D.; Guaragna, A.; Palumbo, G. Curr. Med. Chem.
2009, 16, 473–505. (b) Clinch, K.; Evans, G. B.; Fleet, G. W. J.;
Furneaux, R. H.; Johnson, S. W.; Lenz, D.; Mee, S.; Rands, P. R.;
Schramm, V. L.; Ringia, E. A. T.; Tyler, P. C. Org. Biomol. Chem. 2006,
4, 1131–1139. (c) Smith, S. S. Toxicol. Sci. 2009, 110, 4–30. (d) Rountree,
J. S. S.; Butters, T. D.; Wormald, M. R.; Boomkamp, S. D.; Dwek,
R. A.; Asano, N.; Ikeda, K.; Evinson, E. L.; Nash, R. J.; Fleet, G. W. J.
ChemMedChem 2009, 4, 378–392. (e) Yu, C.-Y.; Asano, N.; Ikeda, K.;
Wang, M.-X.; Butters, T. D.; Wormald, M. R.; Dwek, R. A.; Winters,
A. L.; Nash, R. J.; Fleet, G. W. J. Chem. Commun. 2004, 1936–1937. (f)
da Cruz, F. P.; Newberry, S.; Jenkinson, S. F.; Wormald, M. R.; Butters,
T. D.; Alonzi, D. S.; Nakagawa, S.; Becq, F.; Norez, C.; Nash, R. J.;
Kato, A.; Fleet, G. W. J. Tetrahedron Lett. 2011, 52, 219–223. (g) Asano,
N.; Ikeda, K.; Yu, L.; Kato, A.; Takebayashi, K.; Adachi, I.; Kato, I.;
Ouchi, H.; Takahata, H.; Fleet, G. W. J. Tetrahedron: Asymmetry 2005,
16, 223–229.
genation formed the iminoiditol 6L19 {[R]D ꢀ6.2 (c 0.5,
25
MeOH) for the hydrochloride salt} (100%). The overall
25
yield of 6L from 15D was 46%. The enantiomer 6D {[R]D
(19) Selected data for 3,5-dideoxy-3,5-imino-D-altritol 6L: mp
101ꢀ102 °C; δH (D2O, 400 MHz): 3.45ꢀ3.50 (1H, dd, H6, J6,5 6.3 Hz,
Jgem 11.9 Hz), 3.62ꢀ3.66 (1H, dd, H60, J6 ,5 3.5 Hz, Jgem 11.9 Hz),
0
(16) Weymouth-Wilson, A. C.; Clarkson, R.; Best, D.; Pino-
Gonzalez, M.-S.; Wilson, F. X.; Fleet, G. W. J. Tetrahedron Lett.
2009, 50, 6307–6310.
3.63ꢀ3.67 (1H, dd, H1, J1,2 6.3 Hz, Jgem 11.3 Hz), 3.82ꢀ3.87 (1H, dd,
H10, J1 ,2 7.0 Hz, Jgem 11.3 Hz), 3.84ꢀ3.88 (1H, dd, H4, J4,3 6.3 Hz, J4,5
0
0
8.6 Hz), 3.94ꢀ3.99 (1H, ddd, H5, J5,6 3.5 Hz, J5,6 6.3 Hz, J5,4 8.7 Hz),
(17) Selected data for a HCl salt of 3,5-dideoxy-3,5-imino-D-altritol
5D: δH (D2O, 500 MHz): 3.62ꢀ3.65 (1H, dd, H6, J6,5 5.1 Hz, Jgem 12.1
0
3.99ꢀ4.04 (1H, a-dt, H2, J2,3/J2,1 6.4 Hz, J2,1 7.0 Hz), 4.62ꢀ4.65 (1H,
a-t, H3, J3,2/J3,4 6.4 Hz); δC (D2O, 100 MHz): 60.3 (C4), 60.5 (C2), 61.0
(C1), 63.4 (C6), 68.0 (C3), 71.8 (C5). Selected data for HCl salt of 3,5-
dideoxy-3,5-imino-D-altritol 6 L: δH (D2O, 400 MHz): 3.56ꢀ3.60 (1H,
Hz), 3.68ꢀ3.71 (1H, dd, H60, J6 ,5 4.1 Hz, Jgem 12.1 Hz), 3.88ꢀ3.92 (1H,
0
dd, H1, J1,2 4.1 Hz, Jgem 13.3 Hz), 3.91ꢀ3.95 (1H, dd, H10, J1 ,2 4.8 Hz,
0
dd, H6, J6,5 5.2 Hz, Jgem 12.2 Hz), 3.68ꢀ3.72 (1H, dd, H60, J6 ,5 3.5 Hz,
0
Jgem 13.3 Hz), 4.06ꢀ4.09 (1H, a-dt, H5, J5,6 4.1 Hz, J5,6/J5,4 5.3 Hz),
0
4.30ꢀ4.32 (1H, dd, H4, J4,5 5.5 Hz, J4,3 7.2 Hz), 4.33ꢀ4.36 (1H, a-dt, H2,
Jgem 12.2 Hz), 3.95ꢀ4.00 (1H, dd, H1, J1,2 5.3 Hz, Jgem 12.7 Hz),
4.05ꢀ4.10 (1H, dd, H10, J1 ,2 7.2 Hz, Jgem 12.7 Hz), 4.28ꢀ4.32 (1H,
0
J2,1/J2,1 4.4 Hz, J2,3 7.2 Hz), 4.57ꢀ4.60 (1H, t, H3, J3,4/J3,2 7.2 Hz); δC
0
(D2O, 125 MHz): 58.4 (C1), 62.6 (C6), 64.9 (C3), 67.4, 67.6 (C2 and C4),
68.8 (C5).
0
ddd, H5, J5,6 3.5 Hz, J5,6 5.2 Hz, J5,4 8.1 Hz), 4.56ꢀ4.59 (1H, dd, H4, J4,3
6.7 Hz, J4,5 8.1 Hz), 4.63ꢀ4.67 (1H, m, H2), 4.79ꢀ4.82 (1H, a-t, H3, J3,2
/
(18) Johnson, D. D.; Widlanski, T. S. J. Org. Chem. 2003, 68, 5300–
5309.
J3,4 6.5 Hz); δC (D2O, 100 MHz): 57.2 (C1), 63.0 (C6), 64.0, 64.0 (C2 and
C4), 66.3 (C3), 67.4 (C5).
2144
Org. Lett., Vol. 14, No. 8, 2012