Table 2 The reaction scopeab
Conclusions
We have reported a surprising halide abstraction by α-gold car-
benes generated via gold-catalyzed intermolecular oxidation of
terminal alkynes. Synthetically useful chloro/bromomethyl
ketones can be prepared in one-step from terminal alkynes.
Although the reaction efficiency is moderate, this method may
find its usage in scenarios where functional group compatibility
is critical, by masking the reactive halomethyl ketone as a term-
inal alkyne. Importantly, the strong electrophilicity of the gold
carbene intermediates reveals that gold in general is less effective
in back bonding than rhodium but perhaps similar to Ag. This
conclusion forecasts that the chemistry of α-oxo gold carbenes,
yet to be fully studied, could be very different from the well-
studied Rh counterpart and may provide new opportunities for
methodology development, especially via the alkyne oxidation
strategy.
1
2
3
2b, 58%
4
2c, 42%
5
2d, 62%
6
2e, 55%
7
2f, 65%
8
2g, 53%
9
2h, 51%
10
2i, 56%
11
2j, 70%
12
WH, LX, YX and JX are grateful for the financial support of
Department of Science and Technology Foundation of Hunan
Province (2009WK4005), Hunan Nature Science Foundation
(11JJ5008) and Changsha Science and Technology (K082152-
31). LZ and WH is grateful of the generous financial support by
NSF (CAREER CHE-0969157).
2k, 60%
13
2l, 41%
2m, 43%
14c
15c
2n, 37%
2o, 68%
2p, 60%
16c
17c
18c
Notes and references
1 (a) A. Fürstner and P. W. Davies, Angew. Chem., Int. Ed., 2007, 46,
3410–3449; (b) A. S. K. Hashmi, Chem. Rev., 2007, 107, 3180–3211;
(c) E. s. Jiménez-Nuñez and A. M. Echavarren, Chem. Rev., 2008, 108,
3326–3350; (d) D. J. Gorin, B. D. Sherry and F. D. Toste, Chem. Rev.,
2008, 108, 3351–3378; (e) Z. Li, C. Brouwer and C. He, Chem. Rev.,
2008, 108, 3239–3265; (f) N. T. Patil and Y. Yamamoto, Chem. Rev.,
2008, 108, 3395–3442; (g) S. Wang, G. Zhang and L. Zhang, Synlett,
2010, 692–706; (h) S. Sengupta and X. Shi, ChemCatChem, 2010, 2,
609–619; (i) A. Corma, A. Leyva-Pérez and M. J. Sabater, Chem. Rev.,
2011, 111, 1657–1712; ( j) N. Krause and C. Winter, Chem. Rev., 2011,
111, 1994–2009.
2 (a) N. D. Shapiro and F. D. Toste, J. Am. Chem. Soc., 2007, 129, 4160–
4161; (b) G. Li and L. Zhang, Angew. Chem., Int. Ed., 2007, 46, 5156–
5159; (c) H.-S. Yeom, J.-E. Lee and S. Shin, Angew. Chem., Int. Ed.,
2008, 47, 7040–7043; (d) A. S. K. Hashmi, M. Bührle, R. Salathé and J.
W. Bats, Adv. Synth. Catal., 2008, 350, 2059–2064; (e) L. Cui, Y. Peng
and L. Zhang, J. Am. Chem. Soc., 2009, 131, 8394–8395; (f) L. Cui,
G. Zhang, Y. Peng and L. Zhang, Org. Lett., 2009, 11, 1225–1228;
(g) H.-S. Yeom, Y. Lee, J.-E. Lee and S. Shin, Org. Biomol. Chem.,
2009, 7, 4744–4752; (h) P. W. Davies and S. J. C. Albrecht, Angew.
Chem., Int. Ed., 2009, 48, 8372–8375; (i) L. Cui, L. Ye and L. Zhang,
Chem. Commun., 2010, 46, 3351–3353; ( j) C.-W. Li, G.-Y. Lin and R.-
S. Liu, Chem.–Eur. J., 2010, 16, 5803–5811; (k) H.-S. Yeom, Y. Lee,
J. Jeong, E. So, S. Hwang, J.-E. Lee, S. S. Lee and S. Shin, Angew.
Chem., Int. Ed., 2010, 49, 1611–1614; (l) A. M. Jadhav, S. Bhunia, H.-
Y. Liao and R.-S. Liu, J. Am. Chem. Soc., 2011, 133, 1769–1771.
3 (a) A. B. Cuenca, S. Montserrat, K. M. Hossain, G. Mancha, A. Lledós,
M. Medio-Simón, G. Ujaque and G. Asensio, Org. Lett., 2009, 11, 4906–
4909; (b) L. Ye, L. Cui, G. Zhang and L. Zhang, J. Am. Chem. Soc.,
2010, 132, 3258–3259; (c) B. Lu, C. Li and L. Zhang, J. Am. Chem.
Soc., 2010, 132, 14070–14072; (d) L. Ye, W. He and L. Zhang, J. Am.
Chem. Soc., 2010, 132, 8550–8551; (e) C.-W. Li, K. Pati, G.-Y. Lin,
S. M. A. Sohel, H.-H. Hung and R.-S. Liu, Angew. Chem., Int. Ed., 2010,
49, 9891–9894; (f) L. Ye, W. He and L. Zhang, Angew. Chem., Int. Ed.,
2011, 50, 3236–3239; (g) W. He, C. Li and L. Zhang, J. Am. Chem. Soc.,
2011, 133, 8482–8485; (h) D. Vasu, H.-H. Hung, S. Bhunia, S.
A. Gawade, A. Das and R.-S. Liu, Angew. Chem., Int. Ed., 2011, 50,
6911–6914; (i) A. Mukherjee, R. B. Dateer, R. Chaudhuri, S. Bhunia, S.
N. Karad and R.-S. Liu, J. Am. Chem. Soc., 2011, 133, 15372–15375;
( j) P. W. Davies, A. Cremonesi and N. Martin, Chem. Commun., 2011,
47, 379–381; (k) D. Qian and J. Zhang, Chem. Commun., 2011, 47,
11152–11154; (l) P. W. Davies, A. Cremonesi and L. Dumitrescu, Angew.
2q, 56%
2r, 43%
2s, 42%
a Reaction conditions: [1] = 0.1 M. b Isolated yield are given. c Using
BrettPhosAuNTf2 as the gold catalyst.
Chloro/bromomethyl ketones are versatile substrates10 for
various SN2 reactions and the Reformatsky reaction,11 but their
direct synthesis from the corresponding methyl ketones using
electrophilic halogen sources such as molecular halogen,12
NaClO2,13 and NBS14 can be plagued by poor regioselectivity
and over-halogenation. This alkyne oxidation strategy offers a
conceptually different preparative approach, which avoids the
afore-mentioned issues and could be of synthetic utility. With
this in mind, we proceeded to examine various alkynes substrates
in order to reveal the scope of this chemistry.
As shown in Table 2, the reaction tolerated a range of func-
tional groups including a free HO group (entry 1) and various
protected/functionalized ones (entries 2–6), a chloro group (entry
7), protected amino groups such as tosylamide (entry 8) and
phthalimide (entry 9), a carboxylic acid (entry 10), and phenyl
groups (entries 11 and 12). Cyclohexyl chloromethyl ketone (2n)
(entry 13) was also attainable albeit with a low yield, likely due
to steric hindrance imposed by the secondary alkyl group. By
using dibromoethane as the solvent, this alkyne oxidation strat-
egy could be extended to access the corresponding bromomethyl
ketones (entries 14–18). In all the cases, yields were mostly
moderate but synthetically serviceable, reflecting the reactive
nature of the α-oxo gold carbene intermediates. This reaction did
not work with aliphatic internal alkynes due to facile enone
formation.15
3170 | Org. Biomol. Chem., 2012, 10, 3168–3171
This journal is © The Royal Society of Chemistry 2012