3082
G. Hobley et al. / Bioorg. Med. Chem. Lett. 22 (2012) 3079–3082
starting point for the development of Dam inhibitors. However,
comparison of the IC50 for AdoHcy and 6 suggests there is still a
need to develop improved replacements for the sulfonium group
which provide metabolic stability but also maintain or enhance po-
tency. Replacement of the hydrogen (6) with a methyl group (7)
decreases the inhibitory effect, with a threefold decrease in po-
tency compared to 6 and a 20-fold decrease compared to AdoHcy.
Modification of the nitrogen with groups containing a single het-
eroaromatic ring, such as the pyridin-2-ylmethyl 8 and 3-(pyri-
din-2-yl)propyl 9 analogues resulted in very weak inhibitors (IC50
Acknowledgements
This work was supported by the Transformational Medical
Technologies program contract W911NF-08-C-0004 from the
Department of Defense Chemical and Biological Defense program
through the Defense Threat Reduction Agency (DTRA). We thank
the Engineering and Physical Sciences Research Council for financial
support (to J.E.H.). We thank Dr. F. Turlais and colleagues at Cancer
Research Technology for the gift of Dnmt1 and helpful discussions.
>250 lM). In contrast, analogues containing bicyclic heteroaro-
Supplementary data
matic substituents showed a two to eightfold increase in potency
relative to 6, with indole analogues 10 and 11 showing similar lev-
els of potency to AdoHcy.
Supplementary data associated with this article can be found, in
Increasing the length of the linker between the aryl substituent
and the nitrogen of the AdoMet mimic from two to three carbons
had little effect on potency, suggesting a degree of flexibility within
the binding site accommodating the adenine mimic. This result is
surprising as it contrasts with the effects seen for compounds 6–
9, where increases in the steric bulk of the substituent correlated
with a decrease in potency. The increase in potency observed for
analogues containing even bulkier aromatic heterocyclic groups
(10–14) suggests that these compounds may employ an alternative
binding conformation to AdoMet and its closest analogues, or may
exploit a previously unexplored binding pocket.
Attempts at probing this binding interaction by varying the het-
eroatom have shown a slight decrease in potency when a nitrogen
is substituted for an oxygen or sulfur. In addition changing the
point of attachment in the case of the indole analogue from the
C3 (8) to the C4 (12) position leads to only a minor decrease in po-
tency. For these bicyclic heteroaromatic groups, a hydrophobic
binding pocket might be anticipated, although hydrogen bonding
of the indole N–H may also contribute to binding.
The potential to identify selective inhibitors was the principle
motivation for preparing bisubstrate inhibitors of Dam. The selec-
tivity of the compounds was investigated by comparing the IC50 for
Dam with the IC50 for the human cytosine methyltransferase
Dnmt1. The inhibitory effect of AdoHcy, 7 and 13 against human
Dnmt1 was measured using a real time fluorescence-based Dnmt1
activity assay.36 There were differences in the conditions used to
assay the activity of Dam and Dnmt1 (including pH, buffer, salt
and substrate concentrations) and as such, comparisons between
the IC50 values for different enzymes must be interpreted carefully.
References and notes
1. Marinus, M. G.; Casadesus, J. FEMS Microbiol. Rev. 2009, 33, 488.
2. Heusipp, G.; Falker, S.; Schmidt, M. A. Int. J. Med. Microbiol. 2007, 297, 1.
3. Heithoff, D. M.; Sinsheimer, R. L.; Low, D. A.; Mahan, M. J. Science 1999, 284,
967.
4. Robinson, V. L.; Oyston, P. C.; Titball, R. W. FEMS Microbiol. Lett. 2005, 252, 251.
5. Julio, S. M.; Heithoff, D. M.; Provenzano, D.; Klose, K. E.; Sinsheimer, R. L.; Low,
D. A.; Mahan, M. J. Infect. Immun. 2001, 69, 7610.
6. Mashhoon, N.; Carroll, M.; Pruss, C.; Eberhard, J.; Ishikawa, S.; Estabrook, R. A.;
Reich, N. J. Biol. Chem. 2004, 279, 52075.
7. Naumann, T. A.; Tavassoli, A.; Benkovic, S. J. Chembiochem 2008, 9, 194.
8. Borchardt, R. T.; Huber, J. A.; Wu, Y. S. J. Med. Chem. 1976, 19, 1094.
9. Borchardt, R. T. J. Med. Chem. 1980, 23, 347.
10. Coward, J. K.; Bussolotti, D. L.; Chang, C. D. J. Med. Chem. 1974, 17, 1286.
11. Kumar, R.; Srivastava, R.; Singh, R. K.; Surolia, A.; Rao, D. N. Bioorg. Med. Chem.
2008, 16, 2276.
12. Blanchard, P.; Dodic, N.; Fourrey, J. L.; Lawrence, F.; Mouna, A. M.; Robert-Gero,
M. J. Med. Chem. 1991, 34, 2798.
13. Broom, A. D. J. Med. Chem. 1989, 32, 2.
14. Lerner, C.; Masjost, B.; Ruf, A.; Gramlich, V.; Jakob-Roetne, R.; Zurcher, G.;
Borroni, E.; Diederich, F. Org. Biomol. Chem. 2003, 1, 42.
15. Matuszewska, B.; Borchardt, R. T. J. Neurochem. 1983, 41, 113.
16. Ellermann, M.; Paulini, R.; Jakob-Roetne, R.; Lerner, C.; Borroni, E.; Roth, D.;
Ehler, A.; Schweizer, W. B.; Schlatter, D.; Rudolph, M. G.; Diederich, F. Chemistry
2011, 17, 6369.
17. Woster, P. M.; Black, A. Y.; Duff, K. J.; Coward, J. K.; Pegg, A. E. J. Med. Chem.
1989, 32, 1300.
18. Mori, S.; Iwase, K.; Iwanami, N.; Tanaka, Y.; Kagechika, H.; Hirano, T. Bioorg.
Med. Chem. 2010, 18, 8158.
19. Yao, Y.; Chen, P.; Diao, J.; Cheng, G.; Deng, L.; Anglin, J. L.; Prasad, B. V.; Song, Y.
J. Am. Chem. Soc. 2011, 133, 16746.
20. Daigle, S. R.; Olhava, E. J.; Therkelsen, C. A.; Majer, C. R.; Sneeringer, C. J.; Song,
J.; Johnston, L. D.; Scott, M. P.; Smith, J. J.; Xiao, Y.; Jin, L.; Kuntz, K. W.;
Chesworth, R.; Moyer, M. P.; Bernt, K. M.; Tseng, J. C.; Kung, A. L.; Armstrong, S.
A.; Copeland, R. A.; Richon, V. M.; Pollock, R. M. Cancer Cell 2011, 20, 53.
21. Dowden, J.; Hong, W.; Parry, R. V.; Pike, R. A.; Ward, S. G. Bioorg. Med. Chem.
Lett. 2010, 20, 2103.
22. Obianyo, O.; Causey, C. P.; Osborne, T. C.; Jones, J. E.; Lee, Y. H.; Stallcup, M. R.;
Thompson, P. R. Chembiochem 2010, 11, 1219.
23. Bicker, K. L.; Obianyo, O.; Rust, H. L.; Thompson, P. R. Mol. Biosyst. 2011, 7, 48.
24. Osborne, T. C.; Obianyo, O.; Zhang, X.; Cheng, X.; Thompson, P. R. Biochemistry-
Us 2007, 46, 13370.
In the case of Dnmt1, the IC50 for AdoHcy of 0.9
l
M was close to
the reported literature values (0.8
l
M37 and 0.3
l
M38 respectively)
and for the analogue inhibitors, the introduction of the 2-
(benzo[b]thiophen-3-yl)ethyl group (13) gave an IC50 measure-
ment comparable (within error) to the methyl analogue 7.
However, comparison of IC50s for 7 and 13 with Dam shows a more
than fourfold preference for 13, with a 40-fold difference between
Dam and Dnmt1 in selectivity ratio between AdoHcy and 13 (Table
1). This modest but measurable preference of Dam for inhibitors
bearing the bicyclic heteroaromatic substituent provides a lead
for structure–activity relationship studies to develop more potent
and selective Dam inhibitors.
In summary, this study has confirmed the value of using the
more acid labile Boc protecting group for the efficient synthesis
of bisubstrate AdoMet analogues. The potential of rationally de-
signed bisubstrate AdoMet analogues as Dam inhibitors has also
been demonstrated with several compounds showing IC50 values
in the micromolar range and comparable to the product AdoHcy.
A study of a small library of tertiary amine AdoMet analogues iden-
tified bicyclic aromatic substituents joined by a two or three
carbon linker as combining improved potency with a degree of
selectivity.
25. Wahhab, A.; Besterman, J.; Isakovic, L.; Llewellyn, D.; Rahil, J.; Saavedra, O.;
Dezziel, R. Patent WO/2006/078,752; 2006.
26. Benghiat, E.; Crooks, P. A. J. Med. Chem. 1983, 26, 1470.
27. Janssen, G. G.; Nes, W. D. J. Biol. Chem. 1992, 267, 25856.
28. Nes, W. D.; Janssen, G. G.; Bergenstrahle, A. J. Biol. Chem. 1991, 266, 15202.
29. Benghiat, E.; Crooks, P. A.; Goodwin, R.; Rottman, F. J. Pharm. Sci. 1986, 75, 142.
30. Vaubourgeix, J.; Bardou, F.; Boissier, F.; Julien, S.; Constant, P.; Ploux, O.; Daffe,
M.; Quemard, A.; Mourey, L. J. Biol. Chem. 2009, 284, 19321.
31. Wahnon, D. C.; Shier, V. K.; Benkovic, S. J. J. Am. Chem. Soc. 2001, 123, 976.
32. Han, Y. L.; Chorev, M. J. Org. Chem. 1972, 1999, 64.
33. Reeve, A. M.; Breazeale, S. D.; Townsend, C. A. J. Biol. Chem. 1998, 273, 30695.
34. Wood, R. J.; Maynard-Smith, M. D.; Robinson, V. L.; Oyston, P. C.; Titball, R. W.;
Roach, P. L. PLoS ONE 2007, 2, e801.
35. Leonardi, R. Ph.D. Thesis, University of Southampton, 2004.
36. Wood, R. J.; McKelvie, J. C.; Maynard-Smith, M. D.; Roach, P. L. Nucleic Acids Res.
2010, 38, e107.
37. Isakovic, L.; Saavedra, O. M.; Llewellyn, D. B.; Claridge, S.; Zhan, L.; Bernstein,
N.; Vaisburg, A.; Elowe, N.; Petschner, A. J.; Rahil, J.; Beaulieu, N.; Gauthier, F.;
MacLeod, A. R.; Delorme, D.; Besterman, J. M.; Wahhab, A. Bioorg. Med. Chem.
Lett. 2009, 19, 2742.
38. Lee, W. J.; Zhu, B. T. Carcinogenesis 2006, 27, 269.