Journal of the American Chemical Society
Communication
Angew. Chem., Int. Ed. 2005, 44, 2380. (c) Yamamoto, A.; Ikeda, Y.;
Suginome, M. Tetrahedron Lett. 2009, 50, 3168.
(7) For reviews and highlights, see: (a) Nakao, Y.; Hiyama, T. Pure
Appl. Chem. 2008, 80, 1097. (b) Tobisu, M.; Chatani, N. Chem. Soc.
́
Rev. 2008, 37, 300. (c) Najera, C.; Sansano, J. Angew. Chem., Int. Ed.
2009, 48, 2452. (d) Bonesi, S. M.; Fagnoni, M. Chem.Eur. J. 2010,
16, 13572. (e) Murakami, M.; Matsuda, T. Chem. Commun. 2011, 47,
1100.
(8) (a) Kamiya, I.; Kawakami, J.; Yano, S.; Nomoto, A.; Ogawa, A.
Organometallics 2006, 25, 3562. (b) Lee, Y. T.; Choi, S. Y.; Chung, Y.
K. Tetrahedron Lett. 2007, 48, 5673.
(alkyl)(cyano)palladium(II) species 4, which reductively
eliminates 2a, and the catalytically active palladium and boron
complexes are regenerated. The Lewis acid catalyst is crucial for
the oxidative addition of O−CN bonds, whereas it has also
been shown to promote C(sp3)−CN bond-forming reductive
elimination from palladium(II) through coordination of a cyano
group to Lewis acid.23 Bidentate phosphorus ligands with a
large bite angle18 can also affect the reductive elimination24 and
oxypalladation steps, although detailed mechanistic studies have
yet to be undertaken for fully understanding the proposed
catalytic cycle with exact structures of the suggested
intermediates and the roles of palladium and the boron Lewis
acid.
In summary, we developed regio- and chemoselective
intramolecular oxycyanation of alkenes by palladium/BPh3
catalysis.25 The transformation allows simultaneous introduc-
tion of a tetra-substituted carbon and cyano group through O−
CN bond activation to give dihydrobenzofurans, which are
often found in biologically active compounds.26 Current efforts
are directed toward further expansion of the substrate scope,27
elucidating the catalytic cycle through characterization of some
of the reaction intermediates, and developing enantioselective
cyclization to access optically active dihydrobenzofuran
derivatives.28
(9) Murai, M.; Hatano, R.; Kitabata, S.; Ohe, K. Chem. Commun.
2011, 47, 2375.
(10) Nakao, Y.; Yada, A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc.
2007, 129, 2428.
(11) (a) Tolman, C. A.; Seidel, W. C.; Druliner, J. D.; Domaille, P. J.
Organometallics 1984, 3, 33. (b) Brunkan, N. M.; Brestensky, D. M.;
Jones, W. D. J. Am. Chem. Soc. 2004, 126, 3627.
(12) Nakao, Y.; Ebata, S.; Yada, A.; Hiyama, T.; Ikawa, M.; Ogoshi, S.
J. Am. Chem. Soc. 2008, 130, 12874.
(13) Douglas and coworkers recently reported intramolecular
oxyacylation of alkenes as a pioneering example of oxyfunctionalization
reactions through the catalytic activation of unreactive O−C bonds,
see: Hoang, G. T.; Reddy, V. J.; Nguyen, H. H. K.; Douglas, C. J.
Angew. Chem., Int. Ed. 2011, 50, 1882.
(14) Kutschabsky, L.; Schrauber, H. Krist. Tech. 1973, 8, 217.
(15) Fukumoto, K.; Dahy, A. A.; Oya, T.; Hayasaka, K.; Itazaki, M.;
Koga, N.; Nakazawa, H. Organometallics 2012, 31, 787.
ASSOCIATED CONTENT
■
S
(16) For a review, see: Putter, R. Angew. Chem., Int. Ed. Engl. 1967, 6,
* Supporting Information
̈
206.
Detailed experimental procedures including spectroscopic and
analytical data. This material is available free of charge via the
(17) Martin, D.; Bauer, M. Org. Synth. 1983, 61, 35. Caution! All
operations for the synthesis of cyanates must be carried out in a well-
ventilated fume food because cyanogen bromide used for the O-
cyanation of substituted phenols is highly toxic and can generate
hydrogen cyanide upon hydrolysis.
AUTHOR INFORMATION
■
Corresponding Author
(18) Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Acc.
Chem. Res. 2001, 34, 895.
(19) See Supporting Information for details.
Notes
(20) For similar chemoselectivity with Pd/Au cooperative catalysis,
see: Shi, Y.; Roth, K. E.; Ramgren, S. D.; Blum, S. A. J. Am. Chem. Soc.
2009, 131, 18022.
(21) For C−CN bond activation assisted by BPh3, see ref 10 and
Watson, M. P.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 12594.
(22) (a) Hayashi, T.; Yamasaki, K.; Mimura, M.; Uozumi, Y. J. Am.
Chem. Soc. 2004, 126, 3036. (b) Hay, M. B.; Wolfe, J. P. J. Am. Chem.
Soc. 2005, 127, 16468. (c) Trend, R. M.; Ramtohul, Y. K.; Stoltz, B. M.
J. Am. Chem. Soc. 2005, 127, 17778.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Mr. Yosuke Miyazaki for measurement of HRMS.
This work has been supported financially by Grants-in-Aid for
Scientific Research on Innovative Areas “Molecular Activation
Directed toward Straightforward Synthesis” (No. 22105003)
and Young Scientists (A) (No. 21685023) from MEXT and
Takeda Science Foundation. D.C.K. acknowledges the JSPS for
a fellowship for his short-term research stay.
(23) Huang, J.; Haar, C. M.; Nolan, S. P.; Marcone, J. E.; Moloy, K.
G. Organometallics 1999, 18, 297.
(24) (a) Marcone, J. E.; Moloy, K. G. J. Am. Chem. Soc. 1998, 120,
8527. (b) Fujita, K.; Yamashita, M.; Puschmann, F.; Martinez Alvarez-
Falcon, M.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128,
9044. (c) Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006, 128,
12644.
(25) For leading references of palladium/Lewis acid cooperative
systems, see: (a) Trost, B. M.; King, S. A.; Schmidt, T. J. Am. Chem.
Soc. 1989, 111, 5902. (b) Tamaru, Y.; Horino, H.; Araki, M.; Tanaka,
S.; Kimura, M. Tetrahedron Lett. 2000, 41, 5705. (c) Ogoshi, S.;
Tomiyasu, S.; Morita, M.; Kurosawa, H. J. Am. Chem. Soc. 2002, 124,
11598. (d) Tsuchimoto, T.; Kamiyama, S.; Negoro, R.; Shirakawa, E.;
Kawakami, Y. Chem. Commun. 2003, 852. (e) Lou, S.; Westbrook, J.
A.; Schaus, S. E. J. Am. Chem. Soc. 2004, 126, 11440. (f) Shen, Q.;
Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 7734. (g) Hirner, J. J.; Shi,
Y.; Blum, S. A. Acc. Chem. Res. 2011, 44, 603.
REFERENCES
■
(1) Three Carbon−Heteroatom Bonds: Nitriles, Isocyanides, and
Dervatives; Murahashi, S., Ed.; Science of Synthesis; Georg Thieme
Verlag: Stuttgart, 2004; Vol. 19.
(2) For a review, see: Rajanbabu, T. V. Org. React. 2011, 75, 1.
(3) (a) Chatani, N.; Hanafusa, T. J. Chem. Soc., Chem. Commun.
1985, 838. (b) Chatani, N.; Takeyasu, T.; Horiuchi, N.; Hanafusa, T. J.
Org. Chem. 1988, 53, 3539. (c) Suginome, M.; Kinugasa, H.; Ito, Y.
Tetrahedron Lett. 1994, 35, 8635. For 1,2-dicyanation using silyl
cyanides, see: (d) Arai, S.; Sato, T.; Koike, Y.; Hayashi, M.; Nishida, A.
Angew. Chem., Int. Ed. 2009, 48, 4528.
(4) Chatani, N.; Horiuchi, N.; Hanafusa, T. J. Org. Chem. 1990, 55,
3393.
(5) Obora, Y.; Baleta, A. S.; Tokunaga, M.; Tsuji, Y. J. Organomet.
(26) For example, see: Ohkawa, S.; Fukatsu, K.; Miki, S.; Hashimoto,
T.; Sakamoto, J.; Doi, T.; Nagai, Y.; Aono, T. J. Med. Chem. 1997, 40,
559.
Chem. 2002, 660, 173.
(6) (a) Suginome, M.; Yamamoto, A.; Murakami, M. J. Am. Chem.
Soc. 2003, 125, 6358. (b) Suginome, M.; Yamamoto, A.; Murakami, M.
6546
dx.doi.org/10.1021/ja301375c | J. Am. Chem. Soc. 2012, 134, 6544−6547