process, by subjecting a mixture of the substrates 1a and
[D2]–1a (1 : 1) to the standard conditions.
(c) T. Vogler and A. Studer, Synthesis, 2008, 1979; (d) J. Piera
and J.-E. Backvall, Angew. Chem., Int. Ed., 2008, 47,
3506; (e) L. Tebben and A. Studer, Angew. Chem., Int. Ed., 2011,
50, 2.
´
2 For reviews on green and sustainable chemistry see: (a) I. T. Horvath
¨
ð1Þ
and P. T. Anastas, Chem. Rev., 2007, 107, 2169; (b) P. Anastas and
N. Eghbali, Chem. Soc. Rev., 2010, 39, 301.
3 For some reviews, see: (a) S. S. Stahl, Angew. Chem., Int. Ed., 2004,
43, 3400; (b) T. Punniyamurthy, S. Velusamy and J. Iqbal, Chem.
Rev., 2005, 105, 2329; (c) M. S. Sigman and D. R. Jensen, Acc. Chem.
The intermolecular kinetic isotopic effect (kH/kD = 4.0)
(eqn. 2) indicates that the cleavage of the benzyl C–H bond is
involved in the rate-determining step.
Res., 2006, 39, 221; (d) J. Piera and J.-E. Backvall, Angew. Chem., Int.
¨
Ed., 2008, 47, 3506; (e) K. M. Gligorich and M. S. Sigman, Chem.
Commun., 2009, 3854; (f) B. M. Stoltz, Chem. Lett., 2004, 33, 362;
(g) A. E. Wendlandt, A. M. Suess and S. S. Stahl, Angew. Chem., Int.
Ed., 2011, 50, 2; (h) Z. Shi, C. Zhang, C. Tang and N. Jiao, Chem.
Soc. Rev., 2012, DOI: 10.1039/C2CS15224J.
ð2Þ
4 For the C–C bond coupling, see: M. S. Maji, T. Pfeifer and
A. Studer, Angew. Chem., Int. Ed., 2008, 47, 9547.
5 For other transformations using the TEMPO–O2 catalytic system,
see: (a) Y.-X. Chen, L.-F. Qian, W. Zhang and B. Han, Angew.
Chem., Int. Ed., 2008, 47, 9330; (b) M. Zhang, C. Chen, W. Ma and
J. Zhao, Angew. Chem., Int. Ed., 2008, 47, 9730; (c) B. Han,
C. Wang, R.-F. Han, W. Yu, X.-Y. Duan, R. Fang and
X.-L. Yang, Chem. Commun., 2011, 47, 7818; (d) S. Murarka
and A. Studer, Adv. Synth. Catal., 2011, 353, 2708.
6 For selected reviews on cross dehydrogenative coupling, see:
(a) C.-J. Li and Z. Li, Pure Appl. Chem., 2006, 78, 935;
(b) C.-J. Li, Acc. Chem. Res., 2009, 42, 335; (c) C. S. Yeung and
V. M. Dong, Chem. Rev., 2011, 111, 1215.
The mechanism of this transformation is not clear yet.13 We
have tried to synthesize some intermediates such as hydroperoxyl
or hydroxyl intermediates, but failed due to the instability of these
compounds. The benzyl cations may not be involved in this
transformation, because the corresponding ketone 5 (499% yield)
was obtained in the absence of a nucleophile. More detailed
studies are needed to understand the mechanism.
In summary, we have developed an efficient TEMPO-catalyzed
oxidative C–C bond formation with two Csp3–H bonds using
molecular oxygen as the oxidant. The novel transformation
not only provides a simple and efficient approach to modify
9,10-dihydroacridine derivatives at the 9 position under mild and
neutral conditions, but also discovers a new strategy for the
TEMPO–O2 catalysis to construct C–C bonds. The advantages
of this method include: (1) relatively mild and neutral conditions;
(2) simplicity and safety of operation; (3) a stoichiometric amount
of dangerous oxidants, any transition metals, additives, even
solvent, is not required. These advantages make this protocol
very practical. Further studies on the scope, the mechanism, and
the synthetic applications are ongoing in our laboratory.
7 (a) J. Xie, H. Li, J. Zhou, Y. Cheng and C. Zhu, Angew. Chem., Int.
Ed., 2012, 51, 1252; (b) Y. Shen, M. Li, S. Wang, T. Zhan, Z. Tan
and C.-C. Guo, Chem. Commun., 2009, 953; (c) O. Basle and
´
C.-J. Li, Green Chem., 2007, 9, 1047; (d) W.-J. Yoon,
C. A. Correia, Y. Zhang and C.-J. Li, Synlett, 2009, 138;
(e) E. Boess, D. Sureshkumar, A. Sud, C. Wirtz, C. Fares and
M. Klussmann, J. Am. Chem. Soc., 2011, 133, 8106;
(f) C. A. Correia and C.-J. Li, Tetrahedron Lett., 2010, 51, 1172.
8 More recently, by using strong acids such as CH3SO3H as organo-
catalysts, Klussmann and co-workers realized the significant aerobic
oxidative cross-coupling of Csp3–H bonds not adjacent to a nitrogen
atom. In some cases, high pressure (6.0 bar) is required. Only
ketones were used as the nucleophilic Csp3–H partners. See:
´
A. Pinter, A. Sud, D. Sureshkumar and M. Klussmann, Angew.
´
Chem., Int. Ed., 2010, 49, 5004.
9 (a) L. Janovec, M. Kozurkova
H. Paulıkova, J. Plsıkova, Z. Vantova
´
, D. Sabolova
´
, J. Ungvarsky´ ,
and J. Imrich, Bioorg.
Financial support from National Basic Research Program
of China (973 Program) (Grant No. 2009CB825300) and
National Science Foundation of China (No. 21172006) is
greatly appreciated. We thank Guolin Wu in this group for
reproducing the results of 3ae and 3la.
´
´
´
´
´
Med. Chem., 2011, 19, 1790; (b) X. Luan, C. Gao, N. Zhang,
Y. Chen, Q. Sun, C. Tan, H. Liu, Y. Jin and Y. Jiang, Bioorg. Med.
Chem., 2011, 19, 3312.
10 C. Zhang and N. Jiao, J. Am. Chem. Soc., 2010, 132, 28.
11 (a) J.-S. Yang, Y.-H. Lin and C.-S. Yang, Org. Lett., 2002, 4, 777;
(b) Y. Shirota, J. Mater. Chem., 2000, 10, 1.
12 Y. Ishii, K. Nakayama, M. Takeno, S. Sakaguchi, T. Iwahama and
Y. Nishiyama, J. Org. Chem., 1995, 60, 3934.
13 We thank the referee’s kind suggestions. For a plausible mecha-
nistic discussion, please see ESIw.
Notes and references
1 For some reviews, see: (a) R. A. Sheldon and I. W. C. E. Arends, Adv.
Synth. Catal., 2004, 346, 1051; (b) R. A. Sheldon, I. W. C. E. Arends,
G.-J. Brink and A. Dijksman, Acc. Chem. Res., 2002, 35, 774;
c
4500 Chem. Commun., 2012, 48, 4498–4500
This journal is The Royal Society of Chemistry 2012