19 M. Obata, A. Kitamura, A. Mori, C. Kameyama, J. A. Czaplewska,
R. Tanaka, I. Kinoshita, T. Kusumoto, H. Hashimoto, M. Harada,
Y. Mikata, T. Funabiki and S. Yano, Dalton Trans., 2008, 3292.
20 H. T. Uyeda, Y. X. Zhao, K. Wostyn, I. Asselberghs, K. Clays,
A. Persoons and M. J. Therien, J. Am. Chem. Soc., 2002, 124, 13806.
21 F. Barigelletti, L. Flamigni, V. Balzani, J. P. Collin, J. P. Sauvage,
A. Sour, E. C. Constable and A. M. W. C. Thompson, J. Am. Chem. Soc.,
1994, 116, 7692.
22 S. M. Zakeeruddin, M. K. Nazeeruddin, P. Pechy, F. P. Rotzinger,
R. HumphryBaker, K. Kalyanasundaram, M. Grätzel, V. Shklover and
T. Haibach, Inorg. Chem., 1997, 36, 5937.
23 T. Yutaka, I. Mori, M. Kurihara, J. Mizutani, K. Kubo, S. Furusho,
K. Matsumura, N. Tamai and H. Nishihara, Inorg. Chem., 2001, 40,
4986.
BPN and BPPN, bearing N-heterocyclic carbene ligands, exhib-
ited a larger red-shift than those of BPT and BPPT, which have
tpy-analogous ligands. In particular, the λmax of BPN exhib-
abs
ited the largest degree of red-shift, 43 nm. Furthermore, the
incorporation of an additional phenyl ring between the central
ligand and the pyridyl unit depleted the absorption spectral
changes. In addition, a remarkable colorimetric change was
observed in BPN upon the addition of HCl from 0 to 12 equiva-
lents. The yellow solution of BPN turned into a red solution,
through an orange color. The luminescence intensity of BPT
increased upon addition of HCl, whereas that of BPN decreased
under the same conditions. These Ru–NHC complexes could be
candidates for sensors because of their colorimetric detection as
well as luminescence changes.
24 R. Passalacqua, F. Loiseau, S. Campagna, Y. Q. Fang and G. S. Hanan,
Angew. Chem., Int. Ed., 2003, 42, 1608.
25 K. Kalyanasundaram, Coord. Chem. Rev., 1982, 46, 159.
26 E. C. Constable, E. C. Housecroft, A. C. Thompson, P. Passaniti, S. Silvi,
M. Maestri and A. Credi, Inorg. Chim. Acta, 2007, 360, 1102.
27 P. H. Xie, Y. J. Hou, B. W. Zhang, Y. Cao, F. Wu, W. J. Tian and J.
C. Shen, J. Chem. Soc., Dalton Trans., 1999, 4217.
28 C. H. Su, H. Y. Chen, K. Yun-Da and I. J. Chang, J. Phys. Chem. B,
2007, 111, 6857.
29 L. Tormo, N. Bustamante, G. Colmenarejo and G. Orellana, Anal. Chem.,
2010, 82, 5195.
30 J. N. Demas and B. A. DeGraff, Coord. Chem. Rev., 2001, 211, 317.
31 M. H. Keefe, K. D. Benkstein and J. T. Hupp, Coord. Chem. Rev., 2000,
205, 201.
32 J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Aca-
demic/Plenum Publishers, New York, 2nd edn, 1999.
33 J. Stubbe, D. G. Nocera, C. S. Yee and M. C. Y. Chang, Chem. Rev.,
2003, 103, 2167.
34 J. P. Kirby, J. A. Roberts and D. G. Nocera, J. Am. Chem. Soc., 1995,
117, 8051.
Acknowledgements
This work was supported by the National Research Foundation
of Korea (NRF) (2011-0031444) and the Basic Science Research
Program through the NRF funded by the Ministry of Education,
Science and Technology (R11-2005-065). The authors thank
Dr Xie Lin-Hua for the X-ray crystallographic analysis and
Dr Weon-Sik Chae for the measurement of the lifetime decay.
HJP thanks the Brain Korea 21 fellowship and the Seoul Science
Fellowship.
35 B. Fan, D. L. Fonteont, R. W. Larsen, M. C. Simposon, J. A. Shelnutt,
R. Falcon, L. Martinez, S. Niu, S. Zhang, T. Niemczyk and M.
R. Ondrias, Inorg. Chem., 1997, 36, 5937.
References
1 J. P. Sauvage, J. P. Collin, J. C. Chambron, S. Guillerez, C. Coudret,
V. Balzani, F. Barigelletti, L. Decola and L. Flamigni, Chem. Rev., 1994,
94, 993.
2 A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser and
A. Vonzelewsky, Coord. Chem. Rev., 1988, 84, 85.
3 E. Baranoff, J. P. Collin, L. Flamigni and J. P. Sauvage, Chem. Soc. Rev.,
2004, 33, 147.
36 E. C. Constable, Chem. Soc. Rev., 2007, 36, 246.
37 B. Schulze, D. Escudero, C. Friebe, R. Siebert, H. Gorls, U. Kohn,
E. Altuntas, A. Baumgaertel, M. D. Hager, A. Winter, B. Dietzek,
J. Popp, L. Gonzalez and U. S. Schubert, Chem.–Eur. J., 2011, 17, 5494.
38 S. U. Son, K. H. Park, Y. S. Lee, B. Y. Kim, C. H. Choi, M. S. Lah, Y.
H. Jang, D. J. Jang and Y. K. Chung, Inorg. Chem., 2004, 43, 6896.
39 H.-J. Park, K. H. Kim, S. Y. Choi, H. M. Kim, W. I. Lee, Y. K. Kang and
Y. K. Chung, Inorg. Chem., 2010, 49, 7340.
4 B. Durham, J. V. Caspar, J. K. Nagle and T. J. Meyer, J. Am. Chem. Soc.,
1982, 104, 4803.
40 B. D. Koivisto, K. C. D. Robson and C. P. Berlinquette, Inorg. Chem.,
2009, 48, 9644.
41 S. H. Wadman, M. Lutz, D. M. Tooke, A. L. Spek, F. Hartl,
R. W. A. Havenith, G. P. M. van Klink and G. van Koten, Inorg. Chem.,
2009, 48, 1887.
42 C. J. Yao, L. Z. Sui, H. Y. Xie, W. J. Xiao, Y. W. Zhong and J. N. Yao,
Inorg. Chem., 2010, 49, 8347.
43 J. V. Caspar and T. J. Meyer, J. Am. Chem. Soc., 1983, 105, 5583.
44 G. M. Sheldrick, SHELXS-97, Program for solution of crystal structures,
University of Göttingen, Germany, 1997.
5 I. Rubinstein and A. J. Bard, J. Am. Chem. Soc., 1980, 102, 6641.
6 J. A. Treadway, B. Loeb, R. Lopez, P. A. Anderson, F. R. Keene and T.
J. Meyer, Inorg. Chem., 1996, 35, 2242.
7 L. De Cola and P. Besler, Coord. Chem. Rev., 1998, 177, 301.
8 N. H. Damrauer, G. Cerullo, A. Yeh, T. R. Boussie, C. V. Shank and J.
K. McCusker, Science, 1997, 275, 54.
9 J. H. Alstrum-Acevedo, M. K. Brennaman and T. J. Meyer, Inorg. Chem.,
2005, 44, 6802.
10 M. H. V. Huynh, D. A. Dattelbaum and T. J. Meyer, Coord. Chem. Rev.,
2005, 249, 457.
45 G. M. Sheldrick, SHELXL-97, Program for refinement of crystal struc-
tures, University of Göttingen, Germany, 1997.
46 J. E. Beves, E. L. Dunphy, E. C. Constable, C. E. Housecroft, C.
J. Kepert, M. Neuburger, D. J. Price and S. Schaffner, Dalton Trans.,
2008, 386.
11 L. Hammarstrom and O. Johansson, Coord. Chem. Rev., 2010, 254, 2546.
12 E. Jakubikova, W. Z. Chen, D. M. Dattelbaum, F. N. Rein, R. C. Rocha,
R. L. Martin and E. R. Batista, Inorg. Chem., 2009, 48, 10720.
13 V. Balzani, A. Juris, M. Venturi, S. Campagna and S. Serroni, Chem.
Rev., 1996, 96, 759.
47 A. Juris and V. Balzani, Coord. Chem. Rev., 1988, 84, 85.
48 K. J. Arm, W. Leslie and J. A. G. Williams, Inorg. Chim. Acta, 2006,
359, 1222.
14 J. A. G. Williams, Chem. Soc. Rev., 2009, 38, 1783.
15 K. Kalyanasundaram and M. Grätzel, Coord. Chem. Rev., 1998, 177,
347.
49 M. Maestri, N. Armaroli, V. Balzani, E. C. Constable and
A. M. W. Cargill Thompson, Inorg. Chem., 1995, 34, 2759.
50 J. Dinda, S. Liatard, J. Chauvin, D. Jouvenot and F. Loiseau, Dalton
Trans., 2011, 40, 3683.
16 M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek,
P. Liska, N. Vlachopoulos, V. Shklover, C. H. Fischer and M. Grätzel,
Inorg. Chem., 1999, 38, 6298.
17 M. Abrahamsson, M. Jager, R. J. Kumar, T. Osterman, P. Persson, H.
C. Becker, O. Johansson and L. Hammarstrom, J. Am. Chem. Soc., 2008,
130, 15533.
51 W. Siebrand, J. Chem. Phys., 1967, 47, 2411.
52 H. S. Jung, P. S. Kwon, J. W. Lee, J. I. Kim, C. S. Hong, J. W. Kim,
S. Yan, J. Y. Lee, J. H. Lee, T. Joo and J. S. Kim, J. Am. Chem. Soc.,
2009, 131, 2008.
18 P. P. Laine, S. Campagna and F. Loiseau, Coord. Chem. Rev., 2008, 252,
2552.
5686 | Dalton Trans., 2012, 41, 5678–5686
This journal is © The Royal Society of Chemistry 2012