was accomplished by the metathesis reactions of LitBu and
KC(SiMe3)3 with LSiCl (1). This approach provided easy
access to stable monoalkylsilylenes. Due to the presence of
the bulky substituents, the reactivities of the monoalkylsilylene
differ from other silylenes including monochlorosilylene.
Interestingly, the reaction of LSitBu (2) with N2O yielded
the dimer [LSitBu](m-O)]2 (4), with a four-membered Si2O2
ring, which is in contrast to the trimer [LSi(m-O)Cl]3 obtained
from the reaction of LSiCl (1) with N2O. The latter consists of
a six-membered Si3O3 ring.
7340–7352; (d) R. S. Crees, M. L. Cole, L. R. Hanton and
C. J. Sumby, Inorg. Chem., 2010, 49, 1712–1719; (e) C. Dash,
M. M. Shaikh, R. J. Butcher and P. Ghosh, Inorg. Chem., 2010, 49,
4972–4983; (f) C.-F. Fu, C.-C. Lee, Y.-H. Liu, S.-M. Peng,
S. Warsink, C. J. Elsevier, J.-T. Chen and S.-T. Liu, Inorg. Chem.,
2010, 49, 3011–3018; (g) C.-H. Hsieh and M. Y. Darensbourg,
J. Am. Chem. Soc., 2010, 132, 14118–14125; (h) F. Huang, G. Lu,
L. Zhao and Z.-X. Wang, J. Am. Chem. Soc., 2010, 132,
12388–12396; (i) W.-Q. Zhang, A. C. Whitwood, I. J. S.
Fairlamb and J. M. Lynam, Inorg. Chem., 2010, 49, 8941–8952.
10 (a) P. L. Timms, R. A. Kent, T. C. Ehlert and J. L. Margrave,
J. Am. Chem. Soc., 1965, 87, 2824–2828; (b) D. L. Perry and
J. L. Margrave, J. Chem. Educ., 1976, 53, 696–699;
(c) J. C. Thompson and J. L. Margrave, Science, 1967, 155,
669–671.
We thank the Deutsche Forschungsgemeinschaft for
supporting this work. R.A. is thankful to the Alexander von
Humboldt Stiftung for a research fellowship. D.S. and
H.W. are grateful to the DNRF funded Center for Materials
Crystallography (CMC) for support and the Land Niedersachsen
for providing a fellowship in the Catalysis of Sustainable
Synthesis (CaSuS) PhD program.
11 (a) R. Teichmann and E. Wolf, Z. Anorg. Allg. Chem., 1966, 347,
145–155; (b) M. Schmeisser and P. Voss, Z. Anorg. Allg. Chem.,
1964, 334, 50–56.
12 R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn and D. Stalke,
Angew. Chem., Int. Ed., 2009, 48, 5683–5686 (Angew. Chem., 2009,
121, 5793–5796).
13 (a) J. Li, S. Merkel, J. Henn, K. Meindl, A. Doring, H. W. Roesky,
¨
R. S. Ghadwal and D. Stalke, Inorg. Chem., 2010, 49, 775–777;
(b) R. Azhakar, S. P. Sarish, H. W. Roesky, J. Hey and D. Stalke,
Inorg. Chem., 2011, 50, 5039–5043; (c) G. Tavcar, S. S. Sen,
R. Azhakar, A. Thorn and H. W. Roesky, Inorg. Chem., 2010,
Notes and references
1 P. P. Gaspar, in Reactive Intermediates, ed. M. Jones, Jr. and
R. A. Moss, Wiley, New York, 1985, vol. 3, pp. 333–427.
2 (a) W. Gil and A. M. Trzeciak, Coord. Chem. Rev., 2011, 255,
473–483; (b) W.-H. Zhang, S. W. Chien and T. S. A. Hor, Coord.
Chem. Rev., 2011, 255, 1991–2024.
3 (a) W. Levason, G. Reid and W. Zhang, Coord. Chem. Rev., 2011,
255, 1319–1341; (b) P. P. Gaspar and R. West, in The Chemistry of
Organic Silicon Compounds, ed. Z. Rappoport and Y. Apeloig,
John Wiley and Sons, New York, 2nd edn, 1999, vol. 2, Part 3,
pp. 2463–2568.
49, 10199–10202; (d) R. S. Ghadwal, R. Azhakar, K. Propper,
¨
J. J. Holstein, B. Dittrich and H. W. Roesky, Inorg. Chem., 2011,
50, 8502–8508; (e) R. Azhakar, R. S. Ghadwal, H. W. Roesky,
H. Wolf and D. Stalke, J. Am. Chem. Soc., 2012, 134, 2423–2428;
(f) R. Azhakar, R. S. Ghadwal, H. W. Roesky, J. Hey and
D. Stalke, Chem.–Asian. J., 2012, 7, 528–533.
14 (a) R. Azhakar, S. P. Sarish, H. W. Roesky, J. Hey and D. Stalke,
Organometallics, 2011, 30, 2897–2900; (b) P. W. Percival,
J.-C. Brodovitch, M. Mozafari, A. Mitra, R. West,
R. S. Ghadwal, R. Azhakar and H. W. Roesky, Chem.–Eur. J.,
2011, 17, 11970–11973; (c) R. Azhakar, R. S. Ghadwal,
H. W. Roesky, J. Hey and D. Stalke, Dalton Trans., 2012, 41,
1529–1533; (d) R. Azhakar, S. P. Sarish, G. Tavcar, H. W. Roesky,
J. Hey, D. Stalke and D. Koley, Inorg. Chem., 2011, 50, 3028–3036;
(e) R. Azhakar, R. S. Ghadwal, H. W. Roesky, J. Hey and
D. Stalke, Organometallics, 2011, 30, 3853–3858; (f) A. Jana,
P. P. Samuel, G. Tavcar, H. W. Roesky and C. Schulzke, J. Am.
Chem. Soc., 2010, 132, 10164–10170; (g) R. S. Ghadwal,
4 (a) C. Vollmer and C. Janiak, Coord. Chem. Rev., 2011, 255,
2039–2057; (b) J. K.-H. Hui and M. J. Maclachlan, Coord. Chem.
Rev., 2010, 254, 2363–2390.
5 (a) M. Haaf, T. A. Schmedake and R. West, Acc. Chem. Res., 2000,
33, 704–714; (b) B. Gehrhus and M. F. Lappert, J. Organomet.
Chem., 2001, 617–618, 209–223; (c) S. S. Sen, S. Khan, P. P. Samuel
and H. W. Roesky, Chem. Sci., 2012, 3, 659–682; (d) M. Kira, Chem.
Commun., 2010, 46, 2893–2903; (e) S. S. Sen, H. W. Roesky,
D. Stern, J. Henn and D. Stalke, J. Am. Chem. Soc., 2010, 132,
1123–1126; (f) S. S. Sen, J. Hey, R. Herbst-Irmer, H. W. Roesky and
D. Stalke, J. Am. Chem. Soc., 2011, 133, 12311–12316.
R. Azhakar, H. W. Roesky, K. Propper, B. Dittrich, S. Klein
¨
and G. Frenking, J. Am. Chem. Soc., 2011, 133, 17552–17555.
15 (a) R. Azhakar, G. Tavcar, H. W. Roesky, J. Hey and D. Stalke,
Eur. J. Inorg. Chem., 2011, 475–477; (b) A. Jana, R. Azhakar,
S. P. Sarish, P. P. Samuel, H. W. Roesky, C. Schulzke and
D. Koley, Eur. J. Inorg. Chem., 2011, 5006–5013.
6 A. J. Arduengo, R. L. Harlow and M. Kline, J. Am. Chem. Soc.,
1991, 113, 361–363.
7 M. Denk, R. Lennon, R. Hayashi, R. West, A. V. Belyakov,
H. P. Verne, A. Haaland, M. Wagner and N. Metzler, J. Am.
Chem. Soc., 1994, 116, 2691–2692.
16 M. Kira, S. Ishida, T. Iwamoto and C. Kabuto, J. Am. Chem. Soc.,
1999, 121, 9722–9723.
17 M. Asay, S. Inoue and M. Driess, Angew. Chem., Int. Ed., 2011, 50,
9589–9592 (Angew. Chem., 2011, 123, 9763–9766).
8 (a) in N-Heterocyclic Carbenes in Synthesis, ed. S. P. Nolan, Wiley-
VCH, Weinheim, Germany, 2006; (b) in N-Heterocyclic Carbenes
in Transition Metal Catalysis, ed. F. Glorius, Springer-Verlag,
Berlin, 2007; (c) H. Clavier and S. P. Nolan, Annu. Rep. Prog.
Chem., Sect. B, 2007, 103, 193–222; (d) M. Fustier, F. L. Goff,
P. L. Floch and N. Mezailles, J. Am. Chem. Soc., 2010, 132,
13108–13110; (e) E. M. Phillips, M. Riedrich and K. A. Scheidt,
J. Am. Chem. Soc., 2010, 132, 13179–13181; (f) J. Mathew and
C. H. Suresh, Inorg. Chem., 2010, 49, 4665–4669; (g) A. Jana,
R. Azhakar, G. Tavcar, H. W. Roesky, I. Objartel and D. Stalke,
Eur. J. Inorg. Chem., 2011, 3686–3689.
18 (a) T. Kottke and D. Stalke, Angew. Chem., Int. Ed. Engl., 1993,
32, 580–582 (Angew. Chem., 1993, 105, 619); (b) Y. Xiong, S. Yao
and M. Driess, J. Am. Chem. Soc., 2009, 131, 7562–7563.
19 A. G. Tskhovrebov, E. Solari, M. D. Wodrich, R. Scopelliti and
K. Severin, Angew. Chem., Int. Ed., 2012, 51, 232–234 (Angew.
Chem., 2012, 124, 236–238).
20 (a) A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn and
G. C. Verschoor, J. Chem. Soc., Dalton Trans., 1984, 1349–1356;
(b) V. Chandrasekhar, R. Azhakar, T. Senapati, P. Thilagar,
S. Ghosh, S. Verma, R. Boomishankar, A. Steiner and
9 (a) C.-H. Yang, J. Beltran, V. Lemaur, J. Cornil, D. Hartmann,
W. Sarfert, R. Frohlich, C. Bizzari and L. D. Cola, Inorg. Chem.,
¨
2010, 49, 9891–9901; (b) D. P. Mills, L. Soutar, W. Lewis,
A. J. Blake and S. T. Liddle, J. Am. Chem. Soc., 2010, 132,
14379–14381; (c) H.-J. Park, K. H. Kim, S. Y. Choi, H.-M. Kim,
W. I. Lee, Y. K. Kang and Y. K. Chung, Inorg. Chem., 2010, 49,
P. Kogerler, Dalton Trans., 2008, 1150–1160.
¨
21 W. Li, N. J. Hill, A. C. Tomasik, G. Bikzhanova and R. West,
Organometallics, 2006, 25, 3802–3805.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 4561–4563 4563