2 J. W. Steed and J. L. Atwood, Supramolecular Chemistry: A Concise
Introduction, John Wiley & Sons, Chichester, U.K., 2000.
Conclusion
3 (a) C. J. Easton and S. F. Lincoln, Modified Cyclodextrins—Scaffolds and
Templates for Supramolecular Chemistry, Imperial College Press,
London, UK, 1999; (b) Encyclopedia of Supramolecular Chemistry, ed.
J. L. Atwood and J. W. Steed, Marcel Dekker, New York, 2004.
4 (a) P. Molenveld, J. F. J. Engbersen and D. N. Reinhoudt, Chem. Soc.
Rev., 2000, 29, 75–86; (b) Calixarenes in Action, ed. L. Mandolini and
R. Ungaro, Imperial College Press, London, 2000; (c) J. Rebek, Acc.
Chem. Res., 1999, 32, 278–286; (d) R. Warmuth and J. Yoon, Acc. Chem.
Res., 2001, 34, 95–105; (e) P. Jacopozzi and E. Dacanale, Angew. Chem.,
Int. Ed. Engl., 1997, 36, 613–615; (f) F. Fochi, P. Jacopozzi, E. Wegelius,
K. Rissanen, P. Cozzini, E. Marastoni, E. Fisicaro, P. Manini, R. Fokkens
and E. Dalcanale, J. Am. Chem. Soc., 2001, 123, 7539–7552;
(g) K. Kobayashi, Y. Yamada, M. Yamanaka, Y. Sei and K. Yamaguchi,
J. Am. Chem. Soc., 2004, 126, 13896–13897; (h) B. Bibal, B. Tinant, J.-
P. Declercq and J.-P. Dutasta, Chem. Commun., 2002, 432–433;
(i) G. Mislin, E. Graf, M. W. Hosseini, A. De Cian, N. Kyritsakas and
J. Fischer, Chem. Commun., 1998, 2545–2546; ( j) C. Kleina, E. Graf, M.
W. Hosseini, A. De Cian and J. Fischer, Chem. Commun., 2000, 239–
240.
In summary, we have successfully synthesized a carboxylic acid
functionalized ortho-linked oxacalix[2]arene[2]pyrazine 3 by
employing microwave irradiation. Compound 3 was found to
exist as a pair of isomers and each isomer adopts a 1,3-alternate
conformation with its two carboxylic acid groups pointing in
opposite directions. Crystallographic studies revealed the differ-
ent intermolecular hydrogen bond interaction patterns for crystals
of 3 grown in different solvents (methanol, pyridine and aqueous
guanidine solution). Under coordination-driven self-assembly
conditions, the interactions of racemic 3 with Ag+ and Cu2+
resulted in the formation of discrete cage-based metallosupramo-
lecules 7, 8 and 9 in a chiral self-discrimination manner by brid-
ging the pair of isomeric ligands 3 via Ag–N and Cu–N
coordination bonds in the solid state. However, in the case of
Zn2+ ions, a coordination polymer 10 was generated. In poly-
meric complex 10, dinuclear Zn-containing metallomacrocycles
(formed by bridging two enantiomerically pure ligands 3 via
Zn–N and Zn–O bonds) act as basic structural motifs of the
coordination polymer; different enantiomers of dinuclear Zn-
containing metallomacrocycles are alternated in the polymeric
chain. The Ag+ ion in cage complex 7 is found in a five coordi-
nation environment and adopts a distorted trigonal bipyramidal
geometry; the Cu2+ ions in the cage complexes 8 and 9 are also
five-coordinated, but adopt distorted square pyramidal arrange-
ments; the Zn2+ ions in coordination polymer 10 are six-coordi-
nated and adopt octahedral coordination environments. The
differing electronic structures and coordination preferences of
these metal ions are believed to play a major role in determining
the molecular geometries of the resulting supramolecular com-
plexes. The studies on the metal-mediated self-assembly based
on oxacalix[n]arene[n]hetarenes, as well as guest recognition and
inclusion, are currently ongoing in our laboratory. New results
will be reported in due course.
5 J. W. Lee, S. Samal, N. Selvapalam, H.-J. Kim and K. Kim, Acc. Chem.
Res., 2003, 36, 621–630.
6 For recent reviews, see: (a) B. König and M. H. Fonseca, Eur. J. Inorg.
Chem., 2000, 2303–2310; (b) W. Maes and W. Dehaem, Chem. Soc. Rev.,
2008, 37, 2393–2402; (c) M.-X. Wang, Chem. Commun., 2008, 4541–
4551.
7 (a) H.-Y. Gong, X.-H. Zhang, D.-X. Wang, H.-W. Ma, Q.-Y. Zheng and
M.-X. Wang, Chem.–Eur. J., 2006, 12, 9262–9275; (b) H.-Y. Gong, D.-
X. Wang, J.-F. Xiang, Q.-Y. Zheng and M.-X. Wang, Chem.–Eur. J.,
2007, 13, 7791–7803; (c) H.-Y. Gong, Q.-Y. Zhang, X.-H. Zhang, D.-
X. Wang and M.-X. Wang, Org. Lett., 2006, 8, 4895–4898; (d) B.-
Y. Hou, D.-X. Wang, H.-B. Yang, Q.-Y. Zhang and M.-X. Wang, J. Org.
Chem., 2007, 72, 5218–5226.
8 (a) M.-X. Wang and H.-B. Yang, J. Am. Chem. Soc., 2004, 126, 15412–
15422; (b) M.-X. Wang, X.-H. Zhang and Q.-Y. Zhang, Angew. Chem.,
Int. Ed., 2004, 43, 838–842; (c) Q.-Q. Wang, D.-X. Wang, H.-W. Ma and
M.-X. Wang, Org. Lett., 2006, 8, 5967–5970; (d) S.-Q. Liu, D.-X. Wang,
Q.-Y. Zheng and M.-X. Wang, Chem. Commun., 2007, 3856–3858;
(e) H.-B. Yang, D.-X. Wang, Q.-Q. Wang and M.-X. Wang, J. Org.
Chem., 2007, 72, 3757–3763; (f) Q.-Q. Wang, D.-X. Wang, Q.-Y. Zhang
and M.-X. Wang, Org. Lett., 2007, 9, 2847–2850.
9 (a) J. L. Katz, K. J. Selby and R. R. Conry, Org. Lett., 2005, 7, 3505–
3507; (b) J. L. Katz, M. N. Feldman and R. R. Conry, Org. Lett., 2006, 8,
2755–2758; (c) J. L. Katz, B. J. Geller and P. D. Foster, Chem. Commun.,
2007, 1026–1028.
10 (a) W. Maes, W. Van Rossom, K. Van Hecke, L. Van Meervelt and
W. Debaen, Org. Lett., 2006, 8, 4161–4164; (b) W. Van Rossom,
W. Maes, L. Kishore, M. Ovaere, L. Van Meervelt and W. Dehaen, Org.
Lett., 2008, 10, 585–588; (c) W. Van Rossom, M. Ovaere, L. Van Meer-
velt, W. Dehaen and W. Maes, Org. Lett., 2009, 11, 1681–1684.
11 (a) M.-L. Ma, H.-X. Wang, X.-Y. Li, L.-Q. Liu, H.-S. Jin and K. Wen,
Tetrahedron, 2009, 65, 300–304; (b) M. Li, M.-L. Ma, X.-Y. Li and
K. Wen, Tetrahedron, 2009, 65, 4639–4643.
12 (a) M.-L. Ma, X.-Y. Li and K. Wen, J. Am. Chem. Soc., 2009, 131,
8338–8339; (b) X.-Y. Li, L.-Q. Liu, M.-L. Ma, X.-L. Zhao and K. Wen,
Dalton Trans., 2010, 39, 8646–8651; (c) M.-L. Ma, X.-Y. Li, X.-
L. Zhao, F. Guo, B. Jiang and K. Wen, CrystEngComm, 2011, 13, 1572–
1574.
Acknowledgements
The authors thank the National Natural Science Foundation of
China (21071053, 21002031, 61078071), Shanghai Commission
for Science and Technology (06Pj14034, 09ZR1422500,
10ZR1409700), Shanghai Education Development Foundation
(2008CG31) for financial support; support from the Fundamental
Research Funds for the Central Universities is also
acknowledged.
13 (a) G. M. Sheldrick, SHELXL-97, Program for refinement of crystal
structures, University of Göttingen, Germany, 1997; (b) G. M. Sheldrick,
SHELXS-97, Program for solution of crystal structures, University of
Göttingen, Germany, 1997.
14 E. Hao, F. R. Fronczek, M. Vicente and H. Graca, J. Org. Chem., 2006,
71, 1233–1236.
15 D. J. Duchamp and R. E. Marsh, Acta Crystallogr., Sect. B:Struct. Sci.,
1969, 25, 5–19.
16 (a) C. J. Sumby and M. J. Hardie, Angew. Chem., Int. Ed., 2005, 44,
6395–6399; (b) C. J. Sumby, J. Fisher, T. J. Prior and M. J. Hardie,
Chem.–Eur. J., 2006, 12, 2945–2959.
References
1 Recent reviews, see: (a) T. Kato, T. Yasuda, Y. Kamikawa and M. Yoshio,
Chem. Commun., 2009, 729–739; (b) J. C. Love, L. A. Estroff, J.
K. Kriebel, R. G. Nuzzo and G. M. Whitesides, Chem. Rev., 2005, 105,
1103–1170; (c) M. Kawano and M. Fujita, Coord. Chem. Rev., 2007,
251, 2592; (d) M. Fujita, M. Tominaga, A. Hori and B. Therrien, Acc.
Chem. Res., 2005, 38, 371–380; (e) S. R. Seidel and P. J. Stang, Acc.
Chem. Res., 2002, 35, 972–983; (f) G. F. Sweigers and T. J. Malefeste,
Chem. Rev., 2000, 100, 3483–3537; (g) D. L. Gaulder and K.
N. Raymond, Acc. Chem. Res., 1999, 32, 975–982.
This journal is © The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 5625–5633 | 5633