S. Yazıcı et al. / Spectrochimica Acta Part A 93 (2012) 208–213
213
Table 7
Thermodynamic properties at different pressures at B3LYP/6-31G (d, p) level.
References
[1] A.T. Peters, H.S. Freeman, Colour Chemistry, the Design and Synthesis of Organic
Dyes and Pigments, Elsevier Appl Sci Publ Ltd, Barking, Essex, 1991.
[2] P. Gregory, High-technology Applications of Organic Colorants, Plenum Press,
New York and London, 1991.
[3] S.C. Catino, R.E. Farris, Azo Dyes, John Wiley & Sons, New York, 1985.
[4] Z. Sekkat, M. Dumont, Appl. Phys. B 54 (1) (1992) 486–489.
[5] T. Ikeda, O. Tsutsumi, Science 268 (1995) 1873–1875.
[6] R.H. Berg, S. Hvlisted, P.S. Ramanujam, Nature 383 (1996) 505–508.
[7] M. Snehalatha, C. Ravikumar, I. Hubert Joe, N. Sekar, V.S. Jayakumar, Spec-
trochim. Acta A 72 (2009) 654–662.
[8] Stoe & Cie, X-AREA (Version 1.18) and X-RED32 (Version 1.04), Darmstadt,
Germany, 2002.
P (atm)
Hm0 (kcal mol−1
)
Cp0,m(cal mol−1 K−1
)
Sm0 (cal mol−1 K−1
)
1
1.5
2
2.5
3
3.5
4
4.5
5
140.870
140.065
139.493
139.050
138.687
138.381
138.116
137.882
137.672
12.133
Con-
stant
70.293
Con-
[9] G.M. Sheldrick, Acta Crystallogr. A 64 (2008) 112–122.
[10] L.J. Farrugia, J. Appl. Cryst. 30 (1997) 565.
[11] L.J. Farrugia, J. Appl. Cryst. 32 (1999) 837–838.
[12] A.D. Becke, J. Chem. Phys. 98 (1993) 5648–5652.
As seen from Table 6, the standard thermodynamic functions
molecular vibration increase as temperature increase. While the
pressure is increased at 298.15 K, it was observed that the entropy
increases but the enthalpy and the heat capacity remain constant
(Table 7). According to Boyle’s Law for gases, a molecule is com-
pressed at constant temperature its volume decreases [43]. Due
to decreasing volume, the number of possible sites that occupied
by particles of the molecule may be restricted. Thus, the entropy
tends to decrease with increasing pressure at constant tempera-
ture. This investigation will be helpful for the further studies of the
title molecule.
[13] C. Lee, W.T. Yang, R.G. Parr, Phys. Rev. B 37 (1) (1988) 785–789.
[14] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Peters-
son, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.
Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P.
Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Strat-
mann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.
Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich,
A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari,
J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Ste-
fanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith,
M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. John-
son, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03W, Revision E.
01, Wallingford, CT, Gaussian Inc, 2004.
[15] J.P. Merrick, D. Moran, L. Radom, J. Phys. Chem. A 111 (1) (2007) 11683–11700.
[16] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105 (2005) 2999–3093.
[17] T.S.B. Baul, S. Kundu, H.D. Arman, E.R.T. Tiekink, Acta Crystallogr. E 65 (2009)
o3061–o3306.
4. Conclusion
In this study, we investigated molecular and structural
properties
[18] M.R. Han, D. Hashizume, M. Hara, Acta Crystallogr. E 62 (2006) o3001–o3003.
of
(E)-1-[5-(3,4-dimethylphenyldiazenyl)-2-
˙
[19] H. Karabıyık, H. Petek, N.O. Iskeleli, C¸ . Albayrak, Struct. Chem. 20 (2009)
hydroxyphenyl]ethanone with X-ray diffraction and FT- IR as
well as DFT calculations. The comparison between the calculated
results and the X-ray experimental data indicate that B3LYP/6-31G
(d, p) method shows a good agreement with the experimental
results. There are some differences between the theoretical and
experimental frequencies. The differences related to the weaken-
ing of the OH bond due to the intra-molecular hydrogen bonding.
Generally, we can say that there is a good linear correlation
between them. The MEP map shows that there are two negative
regions around the oxygen atoms. These sites allow researchers to
predict the most probable hydrogen bonding in the molecule. In the
solvent media, while the HOMO–LUMO energy gap of the molecule
is decreased the (hyper) polarizability and dipole moment values
are increased. So, in the present study, NLO parameters display
an increment in the solvent media. The title compound is stable
in the gas phase more than in polar solvents. The thermodynamic
properties of the title compound were also obtained at constant
temperature and at constant pressure. We hope that our paper
will be helpful for new researchers are working on the organic
molecules.
903–910.
[20] J. Bernstein, R.E. Davis, L. Shimoni, N.L. Chang, Angew. Chem. Int. Ed. Engl. 34
(1995) 1555–1573.
[21] A. Bondi, J. Phys. Chem. 68 (1964) 441–452.
[22] A.P. Scott, L. Radom, J. Phys. Chem. 100 (1996) 16502–16513.
[23] H.A. Dabbagh, A. Teimouri, A.N. Chermahini, M. Shahraki, Spectrochim. Acta A
69 (2008) 449–459.
˙
[24] C¸ . Albayrak, I.E. Gümrükc¸ üog˘lu, M. Odabas¸ og˘lu, N.O. Iskeleli, E. Ag˘ar, J. Mol.
Struct. 932 (2009) 43–54.
[25] R.M. Silverstein, F.X. Webster, D. Kiemle, J. Spectrometric Identification of
Organic Compounds, seventh ed., John Wiley & Sons, New York, 2005.
˙
[26] S. Yazıcı, C¸ . Albayrak, I.E. Gümrükc¸ üog˘lu, I. S¸ enel, O. Büyükgüngör, J. Mol. Struct.
985 (2011) 292–298.
[27] R.F. Stewart, Chem. Phys. Lett. 65 (1979) 335–342.
[28] P. Politzer, D.G. Truhlar, Chemical Applications of Atomic and Molecular Elec-
trostatic Potentials, Plenum, New York, 1981.
[29] P. Politzer, P. Lane, J.S. Murray, Cent. Eur. J. Ener. Mater. 8 (2011) 39–52.
[30] M.D. Diener, J.M. Alford, Nature 393 (1998) 668–671.
[31] S.H. Yang, C.L. Pettiette, J. Conceicao, O. Cheshnovsky, R.E. Smalley, Chem. Phys.
Lett. 139 (1987) 233–238.
[32] H. Handschuh, G. Ganteför, B. Kessler, P.S. Bechthold, W. Eberhardt, Phys. Rev.
Lett. 74 (1995) 1095–1098.
[33] D.S. Chemia, J. Zyss, Nonlinear Optical Properties of Organic Molecules and
Crystals, Academic, New York, 1987.
[34] M.D. Aggarwal, J. Stephens, A.K. Batra, R.B. Lal, J. Optoelectron. Adv. Mater. 5
(2003) 555–562.
[35] R. Ittyachan, P. Sagayaraj, J. Cryst. Growth 249 (2003) 557–560.
[36] M.K. Marchewka, S. Debrus, A. Pietraszko, A.J. Barnes, H.J. Ratajczak, J. Mol.
Struct. 656 (2003) 265–273.
Acknowledgements
[37] J. Zyss, Molecular Nonlinear Optics: Materials, Physics and Devices, Academic,
Boston, 1994.
[38] K. Clays, B. Coe, J. Chem. Mater. 15 (2003) 642–648.
[39] A. Ben Ahmed, H. Feki, Y. Abid, C. Minnot, Spectrochim. Acta A 75 (2010)
1315–1320.
[40] M.G. Papadopoulos, A.J. Sadlej, J. Leszscynski, Non-Linear Optical Properties of
Matter Publication Series Challenges and Advances in Computational Chem-
istry and Physics, vol. 1, Springer, Berlin, Germany, 2006.
[41] S. Miertus, E. Scrocco, J. Tomassi, J. Chem. Phys. 55 (1981) 117.
[42] R. Cammi, J. Tomasi, J. Comput. Chem. 16 (1995) 1449–1458.
[43] J.B. West, J. Appl. Physiol. 87 (1999) 1543–1545.
The authors wish to acknowledge the Faculty of Arts and Sci-
ences, Ondokuz Mayis University, Turkey, for the use of STOE IPDS
2 diffractometer (purchased under grant F.279 of the University
Research Fund).
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in