Journal of the American Chemical Society
Page 16 of 17
1
2
3
4
5
6
7
8
9
D. Directly Observed Oxidative Addition of a Strong Carbon-Carbon Bond to a Soluble Metal Complex. J. Am. Chem. Soc.
1995, 117, 9774-9775.
7 Liou, S.-Y.; E. van der Boom, M.; Milstein, D. Catalytic selective cleavage of a strong C–C single bond by rhodium in solution.
Chem. Commun. 1998, 687-688.
Onodera, S.; Ishikawa, S.; Kochi, T.; Kakiuchi, F. Direct Alkenylation of Allylbenzenes via Chelation-Assisted C–C Bond
8
Cleavage. J. Am. Chem. Soc. 2018, 140, 9788-9792.
9 Ruhland, K.; Obenhuber, A.; Hoffmann, S. D. Cleavage of Unstrained C(sp2)—C(sp2) Single Bonds with Ni0 Complexes Using
Chelating Assistance. Organometallics 2008, 27, 3482-3495.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
10
Zhu, J.; Wang, J.; Dong, G. Catalytic activation of unstrained C(aryl)–C(aryl) bonds in 2,2’-biphenols. Nat. Chem. 2019, 11,
45-51.
11
For recent reviews on directed C-H activation, see: (a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Palladium(II)-
Catalyzed C-H Activation/C-C Cross-Coupling Reactions: Versatility and Practicality. Angew. Chem. Int. Ed. 2009, 48, 5094-
5115. (b) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Rhodium-Catalyzed C−C Bond Formation via Heteroatom-Directed
C−H Bond Activation. Chem. Rev. 2010, 110, 624-655. (c) Lyons, T. W.; Sanford, M. S. Palladium-Catalyzed Ligand-
Directed C−H Functionalization Reactions. Chem. Rev. 2010, 110, 1147-1169. (d) Zhang, M.; Zhang, Y.; Jie, X.; Zhao, H.; Li,
G.; Su, W. Recent advances in directed C–H functionalizations using monodentate nitrogen-based directing groups. Org. Chem.
Front. 2014, 1, 843-895. (e) Daugulis, O.; Roane, J.; Tran, L. D. Bidentate, Monoanionic Auxiliary-Directed Functionalization
of Carbon–Hydrogen Bonds. Acc. Chem. Res. 2015, 48, 1053-1064.
12 For C-C activation directed by pyridine and other heterocycles, see: (a) Suggs, J. W.; Jun, C. H. Directed cleavage of carbon-
carbon bonds by transition metals: the α-bonds of ketones. J. Am. Chem. Soc. 1984, 106, 3054-3056. (b) Chatani, N.; Ie, Y.;
Kakiuchi, F.; Murai, S. Ru3(CO)12-Catalyzed Decarbonylative Cleavage of a C−C Bond of Alkyl Phenyl Ketones. J. Am. Chem.
Soc. 1999, 121, 8645-8646. (c) Jun, C.-H.; Lee, H. Catalytic Carbon−Carbon Bond Activation of Unstrained Ketone by
Soluble Transition-Metal Complex. J. Am. Chem. Soc. 1999, 121, 880-881. (d) Jun, C.-H.; Lee, D.-Y.; Kim, Y.-H.; Lee, H.
Catalytic Carbon−Carbon Bond Activation of sec-Alcohols by a Rhodium(I) Complex. Organometallics 2001, 20, 2928-2931.
(e) Jun, C.-H.; Lee, H.; Lim, S.-G. The C−C Bond Activation and Skeletal Rearrangement of Cycloalkanone Imine by Rh(I)
Catalysts. J. Am. Chem. Soc. 2001, 123, 751-752. (f) Jun, C.-H.; Moon, C. W.; Lee, H.; Lee, D.-Y. Chelation-assisted carbon–
carbon bond activation by Rh(I) catalysts. J. Mol. Catal. A: Chem. 2002, 189, 145-156. (g) Li, H.; Li, Y.; Zhang, X.-S.; Chen,
K.; Wang, X.; Shi, Z.-J. Pyridinyl Directed Alkenylation with Olefins via Rh(III)-Catalyzed C–C Bond Cleavage of Secondary
Arylmethanols. J. Am. Chem. Soc. 2011, 133, 15244-15247. (h) Chen, K.; Li, H.; Li, Y.; Zhang, X.-S.; Lei, Z.-Q.; Shi, Z.-J.
Direct oxidative arylation via rhodium-catalyzed C–C bond cleavage of secondary alcohols with arylsilanes. Chem. Sci. 2012,
3, 1645-1649. (i) Lei, Z.-Q.; Li, H.; Li, Y.; Zhang, X.-S.; Chen, K.; Wang, X.; Sun, J.; Shi, Z.-J. Extrusion of CO from Aryl
Ketones: Rhodium(I)-Catalyzed C-C Bond Cleavage Directed by a Pyridine Group. Angew. Chem. Int. Ed. 2012, 51, 2690-
2694. (j) Ko, H. M.; Dong, G. Cooperative activation of cyclobutanones and olefins leads to bridged ring systems by a
catalytic [4+2] coupling. Nat. Chem. 2014, 6, 739. (k) Xia, Y.; Lu, G.; Liu, P.; Dong, G. Catalytic activation of carbon–carbon
bonds in cyclopentanones. Nature 2016, 539, 546. (l) Xia, Y.; Wang, J.; Dong, G. Distal-Bond-Selective C−C Activation of
Ring-Fused Cyclopentanones: An Efficient Access to Spiroindanones. Angew. Chem. Int. Ed. 2017, 56, 2376-2380. (m) Xia,
Y.; Wang, J.; Dong, G. Suzuki–Miyaura Coupling of Simple Ketones via Activation of Unstrained Carbon–Carbon Bonds. J.
Am. Chem. Soc. 2018, 140, 5347-5351. (n) Zhao, T.-T.; Xu, W.-H.; Zheng, Z.-J.; Xu, P.-F.; Wei, H. Directed Decarbonylation
of Unstrained Aryl Ketones via Nickel-Catalyzed C—C Bond Cleavage. J. Am. Chem. Soc. 2018, 140, 586-589.
13
(a) Rendler, S.; Oestreich, M. Hypervalent Silicon as a Reactive Site in Selective Bond-Forming Processes. Synthesis 2005,
2005, 1727-1747. (b) Jia, Z.; Liu, M.; Li, X.; Chan, A. S. C.; Li, C.-J. Highly Efficient Reduction of Aldehydes with Silanes in
Water Catalyzed by Silver. Synlett 2013, 24, 2049-2056. (c) Yan, M.; Jin, T.; Chen, Q.; Ho, H. E.; Fujita, T.; Chen, L.-Y.; Bao,
M.; Chen, M.-W.; Asao, N.; Yamamoto, Y. Unsupported Nanoporous Gold Catalyst for Highly Selective Hydrogenation of
Quinolines. Org. Lett. 2013, 15, 1484-1487.
14
(a) Yutaka, I.; Naoto, C.; Shuhei, Y.; Shinji, M. Rhodium-Catalyzed Si-F Exchange Reaction between Fluorobenzenes and a
Disilane. Catalytic Reaction Involving Cleavage of C-F Bonds. Chem. Lett. 1998, 27, 157-158. (b) Tobisu, M.; Xu, T.;
Shimasaki, T.; Chatani, N. Nickel-Catalyzed Suzuki–Miyaura Reaction of Aryl Fluorides. J. Am. Chem. Soc. 2011, 133,
19505-19511. (c) Ahrens, T.; Kohlmann, J.; Ahrens, M.; Braun, T. Functionalization of Fluorinated Molecules by Transition-
Metal-Mediated C–F Bond Activation To Access Fluorinated Building Blocks. Chem. Rev. 2015, 115, 931-972.
15 For selected Ru-catalyzed C-H acrylate coupling, see: Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Ruthenium(II)-Catalyzed
C–H Bond Activation and Functionalization. Chem. Rev. 2012, 112, 5879-5918.
16 Jung, S.; Ilg, K.; Brandt, C. D.; Wolf, J.; Werner, H. A series of ruthenium(ii) complexes containing the bulky, functionalized
trialkylphosphines tBu2PCH2XC6H5 as ligands. J. Chem. Soc., Dalton Trans. 2002, 318-327. (b) Kuznetsov, V. F.; Abdur-
Rashid, K.; Lough, A. J.; Gusev, D. G. Carbene vs Olefin Products of C−H Activation on Ruthenium via Competing α- and β-
H Elimination. J. Am. Chem. Soc. 2006, 128, 14388-14396. (c) Morilla, M. E.; Rodríguez, P.; Belderrain, T. R.; Graiff, C.;
Tiripicchio, A.; Nicasio, M. C.; Pérez, P. J. Synthesis, Characterization, and Reactivity of Ruthenium Diene/Diamine
Complexes Including Catalytic Hydrogenation of Ketones. Inorg. Chem. 2007, 46, 9405-9414.
(a) Nolan, S. P.; Belderrain, T. R.; Grubbs, R. H. Convenient Synthesis of Ruthenium(II) Dihydride Phosphine Complexes
Ru(H)2(PP)2 and Ru(H)2(PR3)x (x = 3 and 4). Organometallics 1997, 16, 5569-5571. (b) Shen, J.; Stevens, E. D.; Nolan, S. P.
Synthesis and Reactivity of the Ruthenium(II) Dihydride Ru(Ph2PNMeNMePPh2)2H2. Organometallics 1998, 17, 3875-3882.
17
16
ACS Paragon Plus Environment