phenoxide anions by the addition of a protic solvent was
expected to prevent the undesired intermolecular O-alkyl-
ation selectively. Thus, we examined the reaction using a
protic solvent as the cosolvent. The yield was significantly
improved to 71% when the reaction was performed
in a CH2Cl2ÀMeOH mixed solvent system (entry 6). The
satisfactory results using PPh3 led us to focus on the
asymmetric version of this transformation. First, we ex-
amined the reaction using chiral monodentate phosphorus
ligands. 9-NapBN,10 MOP,11 and phosphoramidite
ligands12 like Monophos are effective chiral monodentate
phosphorus ligands in transition-metal-catalyzed allylic
substitution reactions. Trials using these chiral ligands,
however, gave unsatisfactory results (entries 10À13).
We next examined the reaction using privileged bidentate
ligands for the transition metal-catalyzed asymmetric
allylic substitution reactions. Although the reaction rarely
occurred using a PHOX-type ligand (entry 14),13 the
desired transformation proceeded smoothly when Trost
ligandswereused(entries15À17).AmongtheTrostligands
examined, (R,R)-ANDEN-phenyl Trost ligand H was
best for asymmetric induction, and chiral dihydro-
phenanthrene derivative 8a was obtained in 97% yield
and 91% ee (entry 17).14
The stereochemistry of the product 8a was determined
using X-ray analysis (Scheme 3). Reduction of the double
bond of 8a (91% ee), followed by bromination of the
phenolic ring, afforded 9 in 86% yield in two steps. After
esterification of the phenol with a p-nitrobenzoyl chloride
(99% yield), single recrystallization of the product from
hexane-ethyl acetate gave compound 10 with 99% ee.
X-ray analysis of the obtained crystal revealed that the
absolute stereochemistry of the benzylic position of 8a
was (S).15
Table 1. Optimization of the Reaction Conditions Using 7a
ligand
time yielda
eeb
(%)
entry
(mol %)
solvent
(h)
(%)
1
2
3
4
5
6
7
8
9
PPh3 (12) CH2Cl2
5
16
5
12
PPh3 (12) CH3CN
trace
11
PPh3 (12) toluene
PPh3 (12) THF
3
trace
63
PPh3 (12) THF/MeOH (4/1)
PPh3 (12) CH2Cl2/MeOH (4/1)
PPh3 (12) CH2Cl2/MeOH (1/1)
PPh3 (12) CH2Cl2/MeOH (9/1)
PPh3(12) CH2Cl2/t-BuOH (4/
1)
6
16
16
16
16
71
12
46
30
10
11
12
13
14
15
16
17
A (12)
B (12)
C (12)
D (12)
E (6)
CH2Cl2/MeOH (4/1)
CH2Cl2/MeOH (4/1)
CH2Cl2/MeOH (4/1)
CH2Cl2/MeOH (4/1)
CH2Cl2/MeOH (4/1)
CH2Cl2/MeOH (4/1)
CH2Cl2/MeOH (4/1)
CH2Cl2/MeOH (4/1)
10
16
6
trace
62
À7
4
56
18
16
16
6
76
À32
trace
66
F (6)
À65
À10
91
G (6)
88
H (6)
6
97
a Isolated yield. b Determined by chiral HPLC analysis. Negative
value means the opposite enantiomer.
We next examined the scope and limitations of various
substrates under the optimized reaction conditions. All
reactions were performed using 5 mol % of Pd(dba)2 and
(10) (a) Hamada, Y.; Seto, N.; Ohmori, H.; Hatano, K. Tetrahedron
Lett. 1996, 37, 7565. (b) Hamada, Y.; Seto, N.; Takayanagi, Y.; Nakano,
T.; Hara, O. Tetrahedron Lett. 1999, 40, 7791. (c) Hamada, Y.; Saka-
guchi, K.; Hatano, K.; Hara, O. Tetrahedron Lett. 2001, 42, 1297.
(d) Hara, O.; Koshizawa, T.; Makino, K.; Kunimune, I.; Namiki, A.;
Hamada, Y. Tetrahedron 2007, 63, 6170.
(11) (a) Uozumi, Y.; Hayashi, T. J. Am. Chem. Soc. 1991, 113, 9887.
(b) For a review on the MOP ligands, see: Hayashi, T. Acc. Chem. Res.
2000, 33, 354.
Scheme 3. Determination of the Absolute Configuration of 8a
(12) For a review on the chiral phosphoramidite ligands, see:
Teichert, J. F.; Feringa, B. L. Angew. Chem., Int. Ed. 2010, 49, 2486.
(13) For a review on the PHOX ligands, see:Helmuchen, G.; Pfaltz,
A. Acc. Chem. Res. 2000, 33, 336.
(14) For recent selected examples of catalytic asymmetric reactions
using the ANDEN-phenyl Trost ligand H, see: (a) Trost, B. M.; Tsui,
H.-C.; Toste, F. D. J. Am. Chem. Soc. 2000, 122, 3534. (b) Trost,
B. M.; Tang, W. J. Am. Chem. Soc. 2003, 125, 8744. (c) Trost, B. M.;
Frederiksen, M. U. Angew. Chem., Int. Ed. 2005, 44, 308. (d) Trost, B. M.;
Xu, J. J. Am. Chem. Soc. 2005, 127, 2846. (e) Trost, B. M.; Xu, J. J. Am.
Chem. Soc. 2005, 127, 17180. (f) Trost, B. M.; Xu, J.; Reichle, M. J. Am.
Chem. Soc. 2007, 129, 282. (g) Trost, B. M.; Thaisrivongs, D. A. J. Am.
Chem. Soc. 2008, 130, 14092. (h) Trost, B. M.; Thaisrivongs, D. A.
J. Am. Chem. Soc. 2009, 131, 12056. (i) Trost, B. M.; Lehr, K.; Michaelis,
D. J.; Xu, J.; Buckl, A. K. J. Am. Chem. Soc. 2010, 132, 8915. (j) Trost,
B. M.; Czabaniuk, L. C. J. Am. Chem. Soc. 2010, 132, 15534. (k) Trost,
B. M.; Thaisrivongs, D. A.; Hartwig, J. J. Am. Chem. Soc. 2011, 133,
€
12439. (l) Trost, B. M.; Schaffner, B.; Osipov, M.; Wilton, D. A. A.
Angew. Chem., Int. Ed. 2011, 50, 3548.
(15) See the Supporting Information for details.
2352
Org. Lett., Vol. 14, No. 9, 2012