Journal of the American Chemical Society
Article
(4°), 128.0 (CH), 129.1 (CH), 131.1 (CH), 164.7 (4°), 170.8 (4°),
192.1 (4°); mp;146−147 °C (decomp.), IR (KBr, cm−1):1609, 2006,
2070. Anal. calcd for C17H24O4RuSi2: C, 45.41; H, 5.38. Found: C,
45.25; H, 5.34.
Recrystallization of 11. Rutheniumu complex 11 was synthesized
according to our previous report.26 The solid material was dissolved in
THF, and hexane was allowed to slowly difusse into the solution to
give single crystals suitable for X-ray analysis.
(6) (a) Gordon, E. M.; Eisenberg, R. J. Organomet. Chem. 1986, 306,
C53. (b) Fukuoka, A.; Matsuzaka, H.; Hidai, M.; Ichikawa, M. Chem.
Lett. 1987, 941. (c) Mitsudo, T.; Suzuki, N.; Kobayashi, T.; Kondo, T.
J. Mol. Catal. A 1999, 137, 253. (d) Tominaga, K.-i.; Sasaki, Y. J. Mol.
Catal. A 2004, 220, 159. (e) Tominaga, K.-i.; Sasaki, Y. Chem. Lett.
2004, 33, 14. (f) Moreno, M. A.; Haukka, M.; J_skel_inen, S.; Vuoti,
S.; Pursiainen, J.; Pakkanen, T. A. J. Organomet. Chem. 2005, 690,
3803. (g) Moreno, M. A.; Haukka, M.; Turunen, A.; Pakkanen, T. A. J.
Mol. Catal. A 2005, 240, 7.
(7) (a) Drent, E.; Budzelaar, P. H.M. J. Organomet. Chem. 2000,
593−594, 211. (b) Konya, D.; Almeida Lenero, K. Q.; Drent, E.
Organometallics 2006, 25, 3166.
(8) Boogaerts, I. I. F.; White, D. F. S.; Cole-Hamilton, D. J. Chem..
Commun. 2010, 46, 2194.
(9) Fuchs, D.; Rousseau, G.; Diab, L.; Gellrich, U.; Breit, B. Angew.
Chem., Int. Ed. 2012, 51, 2178.
(10) Kranenburg, M.; Vanderburgt, Y. E. M.; Kamer, P. C. J.; van
Leeuwen, P.W. N. M.; Goubitz, K.; Fraanje, J. Organometallics 1995,
14, 3081.
(11) Diebolt, O.; Muller, C.; Vogt, D. Catal. Sci. Technol. 2012, 2,
773.
(12) Takahashi, K.; Yamashita, M.; Ichihara, T.; Nakano, K.; Nozaki,
ASSOCIATED CONTENT
■
S
* Supporting Information
Figures of plot of ln(1 − [1-decene]/[1-decene]0) versus time
for hydroformylation/hydrogenation, hydroformylation, and
isomerization of 1-decene, time course of formation of
undecanol by hydrogenation of undecanal by Shvo’s catalyst
under various conditions, and details for 8−11 by X-ray
crystallographic analysis. This material is available free of charge
AUTHOR INFORMATION
■
K. Angew. Chem., Int. Ed. 2010, 49, 4488.
Corresponding Author
(13) (a) Blum, Y.; Shvo, Y. Inorg. Chim. Acta 1985, 97, L25.
(b) Shvo, Y.; Czarkie, D. J. Organomet. Chem. 1986, 315, C25.
(c) Shvo, Y.; Czarkie, D.; Rahamim, Y.; Chodosh, D. F. J. Am. Chem.
Soc. 1986, 108, 7400. (d) Casey, C. P.; Singer, S.; Powell, D. R.;
Hayashi, R. K.; Kavana, M. J. Am. Chem. Soc. 2001, 123, 1090.
(e) Casey, C. P.; Johnson, J. B.; Singer, W. S.; Cui, Q. J. Am. Chem. Soc.
2005, 127, 3100. (f) Casey, C. P.; Strotman, N. A.; Beetner, S. E.;
Johnson, J. B.; Priebe, D. C.; Guzei, I. A. Organometallics 2006, 25,
1236. (g) Casey, C. P.; Beetner, S. E.; Johnson, J. B. J. Am. Chem. Soc.
2008, 130, 2285.
(14) (a) Grafje, H.; Kornig, W.; Werrz, H. M.; Stefan, G.; Diehi, H.;
Bosche, H.; Schneider, K.; Kieczka, H. Butanediols, Butenediol, and
Butynediol. In Ullmann’s Encyclopedia of Industrial Chemistry,
Electronic Release, 7 th ed.; Wiley-VCH: Weinheim, Germany,
2009. (b) Werle, P.; Morawietz, M.; Lundmark, S.; Sorensen, K.;
Karvinen, E.; Lehtonen, J. Alcohols, Polyhydric. In Ullmann’s
Encyclopedia of Industrial Chemistry, Electronic Release, 7 th ed.;
Wiley-VCH: Weinheim, Germany, 2009.
(15) Backvall, J. E.; Andreasson, U. Tetrahedron Lett. 1993, 34, 5459.
(16) Hydroformylation of internal alkene by Rh/XANTPHOS can
produce n-aldehyde via isomerization to terminal alkene and successive
n-selective hydroformylation. However the n/i was as low as 1.
(17) The consumption of 1-decene gradually got slower than first
order.
(18) For example in the ref 13f, hydrogenation of benzaldehyde (0.97
M) by Shvo’s catalyst (2.4−5.2 mM) under H2 (3.5 MPa) at 60 °C
gave the reaction rate of −d[benzaldehyde]/dt = −3.5 × 10−4 (mol/
L·s), which is 10 times faster than our case (−d[undecanal]/dt = −1.1
× 10−5 (mol/L·s), with undecanal 0.43 M, Shvo’s cat 11 mM, H2 1.0
MPa, CO 1.0 MPa at 120 °C). Considering the difference of
temperature (65 °C versus 120 °C), the reaction rate should 100−
1000 times slower in the presesnce of CO.
(19) Casey et al. reported negative effect of the presence of PPh3 on
the rate of hydrogenation of aldehyde at relatively high temperature
(>60 °C), but the rate was still first order on aldehyde concentration
(ref 13f). Therefore, the change of the rate equation in our experiment
ascribed to the presence of CO.
(20) The stoichiometry of the observed species does not represent
the actual stoichiometry under catalytic condition, which employs
higher H2/CO pressure (2.0 MPa compared to 0.1 MPa in NMR
experiment.)
(21) As a similar example to 1, νCO for Ru(tetraphenylcyclopenta-
dienone)(CO)2(PPh3) was reported. (2037, 2011, 1981, 1955 cm−1).
The lower νCO for this compound than 2 (2081, 2026, 2005 cm−1)
indicates the cooridination of triaryl phosphine makes Ru−CO bond
stronger. For Ru(tetraphenylcyclopentadienone)(CO)2(PPh3), see:
Present Address
†Department of Applied Chemistry, Faculty of Science and
Engineering, Chuo University 1−13−27, Kasuga, Bunkyo-ku,
112−8551, Tokyo (Japan)
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by Funding Program for Next
Generation World-Leading Researchers, Green Innovation, and
Mitsubishi foundation. K.T. is grateful to the Japan Society for
the Promotion of Science (JSPS) for a Research Fellowship for
Young Scientists.
REFERENCES
■
(1) Fable, J.; Bahrmann, B.; Lipps, W.; Mayer, D. Alcohols, Aliphatic.
In Ullmann’s Encyclopedia of Industrial Chemistry, Electronic Release, 7
th ed.; Wiley-VCH: Weinheim, Germany, 2009.
(2) Haggin, J. Chem. Eng. News 1993, 71, 23.
(3) Dong, G.; Teo, P.; Wickens, Z. K.; Grubbs, R. H. Science 2011,
333, 1609.
(4) (a) Slaugh, L. H.; Hill, P.; Mullineaux, R. D. Shell Oil Company,
U.S. Patent 3,239,569, 1966. (b) Slaugh, L. H.; Mullineaux, R. D. J.
Organomet. Chem. 1968, 13, 469. (c) van Winkle, J. L.; Lorenzo, S.;
Moris, R. C.; Mason, R. F. Shell Oil Company, U.S. Patent 3,420,898,
1969. (d) Alvila, L.; Pakkanen, T. A.; Pakkanen, T. T.; Krause, O. J.
Mol. Catal. 1992, 71, 281. (e) Bartik, T.; Bartik, B.; Hanson, B. E. J.
Mol. Catal. 1993, 85, 121. (f) Wong, P. K.; Moxey, A. A. Shell Oil
Company, U.S. Patent 6,114,588, 2000. (g) Crause, C.; Bennie, L.;
Damoense, L.; Dwyer, C. L.; Grove, C.; Grimmer, N.; Rensburg, W. J.
V.; Kirk, M. M.; Mokheseng, K. M.; Otto, S.; Steynberg, P. J. Dalton
Trans. 2003, 2036.
(5) (a) MacDougall, J. K.; Cole-Hamilton, D. J. J. Chem. Soc. Chem.
Commun. 1990, 165. (b) MacDougall, J. K.; Simpson, M. C.; Green,
M. J.; Cole-Hamilton, D. J. J. Chem. Soc. Dalton 1996, 1161.
(c) Sandee, A. J.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W.
N. M. J. Am. Chem. Soc. 2001, 123, 8468. (d) Ropartz, L.; Morris, R.
E.; Foster, D. F.; Cole-Hamilton, D. J. J. Mol. Catal. A 2002, 182, 99.
(e) Solsona, A.; Suades, J.; Mathieu, R. J. Organomet. Chem. 2003, 669,
172. (f) Ichihara, T.; Nakano, K.; Katayama, M.; Nozaki, K. Chem.
Asian J. 2008, 3, 1722. (g) Diab, L.; Mejkal, K. M.; Geier, J.; Breit, B.
Angew. Chem., Int. Ed. 2009, 48, 8022.
18756
dx.doi.org/10.1021/ja307998h | J. Am. Chem. Soc. 2012, 134, 18746−18757