S. Venkateswarlu et al. / Tetrahedron Letters 53 (2012) 2643–2646
2645
Table 2
Organic Chemistry, Indian Institute of Science, Bangalore, India for
helpful discussions.
C@O absorption band of the compounds 1 and 2
Compd No.
C@O (
m
max/cmÀ1
)
References and notes
1
2
a
b
c
d
e
f
1701
1699
1700
1709
1701
1709
1660
1651
1647
1651
1655
1658
1. (a) Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V. Comprehensive Heterocyclic
Chemistry II; Pergamon: Oxford, 1996; (b) Joule, J. A.; Mills, K. Heterocyclic
Chemistry; Blackwell Science: Oxford, 2000.
2. (a) Nicolaou, K. C.; Vourloumis, D.; Winssinger, N.; Baran, P. S. Angew. Chem.,
Int. Ed. 2000, 39, 44–122; (b) Arya, P.; Chou, D. T. H.; Baek, M.-G. Angew. Chem.,
Int. Ed. 2001, 40, 339–346.
3. (a) Michael, J. P. Nat. Prod. Rep. 2001, 18, 543–559; (b) Reddy, P. S.; Reddy, P. P.;
Vasantha, T. Heterocycles 2003, 60, 183–226; (c) Horton, D. A.; Bourne, G. T.;
Smythe, M. L. Chem. Rev. 2003, 103, 893–930.
4. (a) Connolly, D. J.; Cusack, D.; O’Sullivan, T. P.; Guiry, P. J. Tetrahedron 2005, 61,
10153–10202; (b) Mhaske, S. B.; Argade, N. P. J. Org. Chem. 2004, 69, 4563–
4566; (c) Ahmed, K.; Reddy, K. S.; Prasad, B. R.; Babu, A. H.; Ramana, A. V.
Tetrahedron Lett. 2004, 45, 6517–6521; (d) Takeuchi, H.; Hagiwara, S.; Eguchi, S.
Tetrahedron 1989, 45, 6375–6386; (e) Li, F.; Feng, Y.; Meng, Q.; Li, W.; Li, Z.;
Wang, Q.; Tao, F. ARKIVOC 2007, 1, 40–50; (f) Gupton, J. T.; Correia, K. F.; Hertel,
G. R. Synth. Commun. 1984, 14, 1013–1025.
5. (a) Hennequin, L. F.; Thomas, A. P.; Johnstone, C.; Stokes, E. S. E.; Ple, P. A.;
Lohmann, J.-J. M.; Ogilvie, D. J.; Dukes, M.; Wedge, S. R.; Curwen, J. O.; Kendrew,
J.; Brempt, C. L. J. Med. Chem. 1999, 42, 5369–5389; (b) Seijas, J. A.; Vazquez-
Tato, M. P.; Martinez, M. M. Tetrahedron Lett. 2000, 41, 2215–2217; (c)
Rewcastle, G. W.; Denny, W. A.; Bridges, A. J.; Zhou, H.; Cody, D. R.; McMichael,
A.; Fry, D. W. J. Med. Chem. 1995, 38, 3482–3487; (d) Wang, J.-Q.; Gao, M.;
Miller, K. D.; Sledge, G. W.; Zheng, Q.-H. Bioorg. Med. Chem. Lett. 2006, 16, 4102–
4106.
Table 3
13C NMR data of isomeric fused quinazolinones
Compd No.
C@O (d ppm)
1
2
a
b
c
d
e
f
161.4
160.5
161.6
160.8
160.2
161.4
167.3
167.0
167.4
166.5
166.0
167.5
6. Stephen, T.; Stephen, H. J. Chem. Soc. 1956, 4173–4177.
7. Butler, K.; Partridge, M. W.; Waite, J. A. J. Chem. Soc. 1960, 4970–4976.
8. Alexandre, F.-R.; Berecibar, A.; Wrigglesworth, R.; Besson, T. Tetrahedron 2003,
59, 1413–1419.
H
H3C
O
N
O
O H3C
OH
NH
9. Hu, Z.; Li, S.-d.; Hong, P.-z. ARKIVOC 2010, 9, 171–177.
N
NH
10. (a) Ozaki, K.-I.; Yamada, Y.; Oine, T. Chem. Pharm. Bull. 1984, 32, 2160–2164; (b)
Marinho, E.; Araujo, R.; Proenca, F. Tetrahedron 2010, 66, 8681–8689.
11. In addition, Calestani et al. reported the formation of compound 2 as a minor
product during the reaction of 2-[4-imino-2-thioxa-1,4-dihydro-3(2H)-
quinazolinyl]benzonitrile with Mn(OAc)3; Calestani, G.; Capella, L.; Leardini,
R.; Minozzi, M.; Nanni, D.; Papa, R.; Zanardi, G. Tetrahedron 2001, 57, 7221–
7233.
12. Azizian, J.; Mohammadi, A. A.; Karimi, A. R.; Mohammadizadeh, M. R. J. Chem.
Res. 2004, 435–437.
13. (a) Roy, A. D.; Subramanian, A.; Roy, R. J. Org. Chem. 2006, 71, 382–385; (b) Roy,
A. D.; Subramanian, A.; Mukhopadhyay, B.; Roy, R. Tetrahedron Lett. 2006, 47,
6857–6860.
14. (a) Waibel, M.; Hasserodt, J. Tetrahedron Lett. 2009, 50, 2767–2769; (b)
Hanusek, J.; Sedlak, M.; Simunek, P.; Sterba, V. Eur. J. Org. Chem. 2002, 1855–
1863; (c) Gardner, B.; Kanagasoorian, A. J. S.; Smyth, R. M.; Williams, A. J. Org.
Chem. 1994, 59, 6245–6250; (d) Kabri, Y.; Gellis, A.; Vanelle, P. Green Chem.
2009, 11, 201–208; (e) Wang, G.-W.; Miao, C.-B.; Kang, H. Bull. Chem. Soc. Jpn.
2006, 79, 1426–1430.
N
3
-H2O
1
N
N
H
O
O
N
O
N
N
-H2O
2
NH
H3C
HO
N
H
H3C
6
Scheme 3. Probable mechanism for the formation of 1 and 2.
15. General procedure for 1 and 2: A solution of 3 (500 mg) in acetic anhydride
(10 mL) was refluxed for 2 h and allowed to cool to rt. The solution was poured
into ice cold water and stirred for 10 min. The solution was extracted with
chloroform (3 Â 100 mL) and the combined layer was washed with water,
brine dried over sodium sulfate and filtered. The solution was evaporated and
the residue was chromatographed over silica gel column using chloroform/
methanol (95:5) as eluents to give the products.
addition of either nitrogen N3 or N1 in 6 on to the amide, followed
by the loss of water molecule generates 1 or 2, respectively.
In summary, we have described an approach for the synthesis of
isomeric angularly fused quinazolinoquinazolinones 1 and 2. With
acid anhydrides, 2-(2-aminophenyl)quinazolin-4(3H)-ones 3 were
competitively cyclised to generate 6-alkyl-(8H)-quinazolino[4,3-
b]quinazolin-8-ones 1 and 6-alkyl-(13H)-quinazolino[3,4-a]qui-
nazolin-13-ones 2, via intramolecular nucleophilic addition of
either N3-nitrogen or N1-nitrogen, respectively. The methodology
provides an entry for the isomeric angularly fused quinazolinones
from a common intermediate and can be useful for the creation of
libraries in a short time. The two series of compounds were found
to be easily distinguishable from their IR and 13C NMR data. The
carbonyl absorptions in IR spectra of 1 are at higher value (be-
tween 1699 and 1709 cmÀ1) than those of 2 (between 1647 and
1660 cmÀ1). The carbonyl absorption in carbon NMR spectra of 1
appeared at higher field and the value is lower than that of 2 (ca.
5–6 ppm).
16. Spectroscopic data—Compound 1a: Off-white color solid (49%), mp 180–182 °C
(Lit.12 mp 180–181 °C). IR (KBr)
m
max 1701, 1624, 1601, 1375, 1338, 1252, 1209,
1082, 1024 cmÀ1
;
1H NMR (400 MHz, CDCl3): d 8.75 (1H, d, J = 8.0 Hz), 8.35
(1H, d, J = 7.6 Hz), 7.79–7.86 (2H, m), 7.73 (1H, td, J = 7.6, 1.2 Hz), 7.67 (1H, d,
J = 7.6 Hz), 7.55 (1H, td, J = 7.5, 1.0 Hz), 7.49 (1H, td, J = 7.4, 1.2 Hz), 3.12 (3H, s);
13C NMR (100 MHz, CDCl3): d 161.4, 150.4, 146.7, 146.2, 142.2, 135.3, 133.4,
127.9, 127.5, 127.1, 126.9, 126.3, 126.1, 121.6, 120.7, 27.3; LC–MS (positive ion
mode): m/z 262 (M+H)+.
Compound 2a: Pale brown color solid (32%), mp 224–226 °C (Lit.10a mp 227–
230 °C). IR (KBr) mmax 1660, 1616, 1604, 1595, 1346, 1328, 1273, 1240, 1215,
1114, 1070, 1041, 771, 754 cmÀ1 1H NMR (400 MHz, CDCl3): d 8.72 (1H, dd,
;
J = 8.0, 0.8 Hz), 8.41 (1H, d, J = 7.6 Hz), 7.83 (1H, td, J = 7.6, 1.6 Hz), 7.74–7.76
(2H, m), 7.71 (1H, d, J = 8.0 Hz), 7.63–7.67 (1H, m), 7.58 (1H, td, J = 7.6, 1.2 Hz),
3.00 (3H, s); 13C NMR (100 MHz, CDCl3): d 167.3, 153.3, 148.2, 143.4, 136.8,
134.9, 131.9, 128.4, 128.2, 128.1, 126.8, 126.3, 123.1, 120.4, 119.9, 26.0; LC–MS
(positive ion mode): m/z 262 (M+H)+.
Compound 1b: Off-white color solid (50%), mp 228–230 °C. IR (KBr)
mmax 1699,
1620, 1597, 1396, 1292, 1242, 1126, 1080, 1006, 775 cmÀ1 1H NMR (400 MHz,
;
CDCl3): d 8.61 (1H, d, J = 8.0 Hz), 7.68 (1H, t, J = 7.4 Hz), 7.62 (1H, d, J = 7.6 Hz),
7.59 (1H, s), 7.50 (1H, t, J = 7.2 Hz), 7.11 (1H, s), 4.04 (3H, s), 4.00 (3H, s), 3.12
(3H, s); 13C NMR (100 MHz, CDCl3): d 160.5, 156.1, 150.4, 149.0, 145.3, 143.2,
142.0, 133.0, 127.8, 126.9, 125.7, 121.6, 113.8, 107.3, 106.2, 56.4, 56.3, 27.6;
LC–MS (positive ion mode): m/z 322 (M+H)+; HRMS-(EI) (m/z) (M+H)+ calcd for
Acknowledgments
We sincerely thank Sri G. Ganga Raju, Chairman, and Mr. G.
Rama Raju, Director, Laila Impex, for support and encouragement.
We are also thankful to Professor A. Srikrishna, the Department of
C
18H16N3O3 322.1192, found 322.1192.
Compound 2b: Off-white color solid (25%), mp 282–284 °C. IR (KBr)
1604, 1280, 1250, 1203, 1006, 763 cmÀ1 1H NMR (400 MHz, CDCl3): d 8.69
mmax 1651,
;