ORGANIC
LETTERS
2012
Vol. 14, No. 9
2254–2257
Palladium-Catalyzed Asymmetric Allylic
Alkylation of Electron-Deficient Pyrroles
with Meso Electrophiles
Barry M. Trost,* Maksim Osipov, and Guangbin Dong
Department of Chemistry, Stanford University, Stanford, California 94305,
United States
Received March 14, 2012
ABSTRACT
Pyrroles can serve as competent nucleophiles with meso electrophiles in the Pd-catalyzed asymmetric allylic alkylation. The products from this
transformation were obtained as a single regio- and diastereomer in high yield and enantiopurity. A nitropyrrole-containing nucleoside analogue
was synthesized in seven steps to demonstrate the synthetic utility of this transformation.
The assembly oforganicmoleculesin anenantioselective
fashion remains an important synthetic challenge. The Pd-
catalyzed asymmetric allylic alkylation (Pd-AAA) is a
powerful method for the construction of several different
bond types, including CÀC, CÀN, CÀO, and CÀS
bonds.1 Typically, the Pd-AAA requires the use of soft,
stabilized nucleophiles, such as malonates or imides. Re-
cently, less stabilized nucleophiles have been successfully
employed in the Pd-AAA.2
have been shown to act as universal nucleosides in PCR
amplification of DNA.3 This activity has been attributed
to the electronic distribution of the pyrrole nucleus, which
interacts equally well with all four natural nucleoside
bases. Further, due to the broad-spectrum antiviral activity
observed in the drug ribavirin, pyrrole-containing nucleo-
side analogues have been studied as isosteres for their
potential antiviral properties and other useful biological
activities (Figure 1).3 Likewise, these nucleoside analo-
gues have been used to study the mechanism of action
of ribavirin.4
The importance of nitrogen-containing compounds makes
the stereoselective construction of CÀN bonds an important
synthetic endeavor. Pyrrole-substituted nucleoside analogues
(1) (a) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
(b) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921. (c) Trost,
B. M. J. Org. Chem. 2004, 69, 5813. (d) Trost, B. M.; Machacek, M. R.;
Aponick, A. Acc. Chem. Res. 2006, 39, 747. (e) Trost, B. M.; Fandrick,
D. R. Aldrichimica Acta 2007, 40, 59.
(2) For some examples, see: (a) Trost, B. M.; Schroeder, G. M. J. Am.
Chem. Soc. 1999, 121, 6759. (b) Trost, B. M.; Zhang, T. Org. Lett. 2006,
8, 6007. (c) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2008,
130, 14092. (d) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc.
2009, 131, 12056. Trost, B. M.; Thaisrivongs, D. A.; Hartwig, J. J. Am.
Chem. Soc. 2011, 133, 12439.
(3) (a) Nichols, R.; Andrews, P. C.; Zhang, P.; Bergstrom, D. E.
Nature 1994, 369, 492. (b) Bergstrom, D. E.; Zhang, P.; Toma, P. H.;
Andrews, P. C.; Nichols, R. J. Am. Chem. Soc. 1995, 117, 1201.
(c) Klewer, D. A.; Hoskins, A.; Zhang, P.; Davisson, V. J.; Bergstrom,
D. E.; LiWang, A. C. Nucleic Acids Res. 2000, 28, 4514. (d) Harki, D. A.;
Graci, J. D.; Korneeva, V. S.; Ghosh, S. K. B.; Hong, Z.; Cameron,
C. E.; Peterson, B. R. Biochemistry 2002, 41, 9026.
Figure 1. Representative compounds.
(4) Sanghvi, Y. S.; Bhattacharya, B. K.; Kini, G. D.; Matsumoto,
S. S.; Larson, S. B.; Jolley, W. B.; Robins, R. K.; Revanker, G. R.
J. Med. Chem. 1990, 33, 336.
r
10.1021/ol3006584
Published on Web 04/16/2012
2012 American Chemical Society