2472
J. Liu et al. / Tetrahedron Letters 53 (2012) 2469–2472
X. F.; Xing, C. H.; Li, D. M.; Zhu, S. Z.; Deng, H. M.; Shao, M. Synlett 2010, 830–
Acknowledgments
834; (d) Dai, B. F.; Song, L. P.; Wang, P. Y.; Yi, H.; Jin, G. F.; Zhu, S. Z.; Shao, M.
Synlett 2009, 1842–1846; (e) Song, S. D.; Song, L. P.; Dai, B. F.; Yi, H.; Jin, G. F.;
Zhu, S. Z.; Shao, M. Tetrahedron 2008, 64, 5728–5735; (f) Li, D. M.; Song, L. P.; Li,
X. F.; Xing, C. H.; Peng, W. M.; Zhu, S. Z. Eur. J. Org. Chem. 2007, 3520–3525; (g)
Li, D. M.; Song, L. P.; Song, S. D.; Zhu, S. Z. J. Fluorine Chem. 2007, 128, 952–957;
(h) Li, X. F.; Song, L. P.; Xing, C. H.; Zhao, J. W.; Zhu, S. Z. Tetrahedron 2006, 62,
2255–2263.
The authors thank the National Natural Science Foundation of
China (NNSFC) (Nos. 21072128, 20772080), Leading Academic Dis-
cipline Project of Shanghai Municipal Education Commission (No.
J50102), the Key Laboratory of Organofluorine Chemistry, and
Shanghai Institute of Organic Chemistry for financial support.
10. Atkinson, R. S.; Barker, E.; Edwards, P. J.; Thomson, G. A. J. Chem. Soc. Perkin
Trans. 1 1995, 1533–1543.
11. (a) Katsuyama, I.; Ogawa, S.; Yamaguchi, Y.; Funabiki, K.; Matsui, M.;
Muramatsu, H.; Shibata, K. Synthesis 1997, 1321–1324; (b) Amii, H.;
Kobayashi, T.; Terasawa, H.; Uneyama, K. Org. Lett. 2001, 3, 3103–3105; (c)
Xing, C. H.; Zhu, S. Z. J. Org. Chem. 2004, 69, 6486–6488.
12. (a) Uckun, F. M.; Chen, M.; Vassilev, A. O.; Huang, H.; Jan, S. T. Bioorg. Med.
Chem. Lett. 2000, 10, 541–545; (b) Gonzalez, R.; Martin, N.; Seoane, C.; Marco, J.
L.; Albert, A.; Cano, F. H. Tetrahedron Lett. 1992, 33, 3809–3812.
13. (a) Li, J. J.; Tang, W. Y.; Lu, L. M.; Su, W. K. Tetrahedron Lett. 2008, 49, 7117–
7120; (b) Kumar, A.; Sharma, S.; Maurya, R. A.; Sarkar, J. J. Comb. Chem. 2010,
12, 20–24.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
14. Yao, C. S.; Jiang, B.; Li, T. J.; Qin, B. B.; Feng, X. d.; Zhang, H. H.; Wang, C. H.; Tu, S.
J. Bioorg. Med. Chem. Lett. 2011, 21, 599–601.
15. Cadierno, V.; Dıez, J.; Gimeno, J.; Nebra, N. J. Org. Chem. 2008, 73, 5852–
1. (a) Chebanov, V. A.; Muravyova, E. A.; Desenko, S. M.; Musatov, V. I.; Knyazeva,
I. V.; Shishkina, S. V.; Shishkin, O. V.; Kappe, C. O. J. Comb. Chem. 2006, 8, 427–
434; (b) Dondoni, A.; Massi, A.; Sabbatini, S.; Bertolasi, V. J. Org. Chem. 2002, 67,
6979–6994.
2. (a) Nilsson, B. L.; Overman, L. E. J. Org. Chem. 2006, 71, 7706–7714; (b) Vugts, D.
J.; Koningstein, M. M.; Schmitz, R. F.; de Kanter, F. J.; Groen, M. B.; Orru, R. V.
Chem.-Eur. J. 2006, 12, 7178–7189.
3. Xu, L. W.; Xia, C. G.; Li, L. J. Org. Chem. 2004, 69, 8482–8484.
4. Fewell, S. W.; Smith, C. M.; Lyon, M. A.; Dumitrescu, T. P.; Wipf, P.; Day, B. W.;
Brodsky, J. L. J. Biol. Chem. 2004, 279, 51131–51140.
5. (a) Chebanov, V. A.; Saraev, V. E.; Desenko, S. M.; Chernenko, V. N.; Shishkina, S.
V.; Shishkin, O. V.; Kobzar, K. M.; Kappe, C. O. Org. Lett. 2007, 9, 1691–1694; (b)
De Silva, R. A.; Santra, S.; Andreana, P. R. Org. Lett. 2008, 10, 4541–4544; (c)
Glasnov, T. N.; Stadlbauer, W.; Kappe, C. O. J. Org. Chem. 2005, 70, 3864–3870;
(d) Evans, C. G.; Gestwicki, J. E. Org. Lett. 2009, 11, 2957–2959.
6. (a) Okandeji, B. O.; Gordon, J. R.; Sello, J. K. J. Org. Chem. 2008, 73, 5595–5597;
(b) Isaacson, J.; Loo, M.; Kobayashi, Y. Org. Lett. 2008, 10, 1461–1463; (c) Pirali,
T.; Callipari, G.; Ercolano, E.; Genazzani, A. A.; Giovenzana, G. B.; Tron, G. C. Org.
Lett. 2008, 10, 4199–4202; (d) Scheffelaar, R.; Paravidino, M.; Muilwijk, D.;
Lutz, M.; Spek, A. L.; Ruijter, E. Org. Lett. 2009, 11, 125–128; (e) Berlozecki, S.;
Szymanski, W.; Ostaszewski, R. Tetrahedron 2008, 64, 9780–9783; (f) Ilyin, A.;
Kysil, V.; Krasavin, M.; Kurashvili, I.; Ivachtchenko, A. V. J. Org. Chem. 2006, 71,
9544–9547; (g) Bonnaterre, F.; Bois-Choussy, M.; Zhu, J. P. Org. Lett. 2006, 8,
4351–4354; (h) Casabona, D.; Cativiela, C. Tetrahedron 2006, 62, 10000–10004.
7. (a) Welch, J. T. Tetrahedron 1987, 43, 3123–3197; (b) Frezza, M.; Balestrino, D.;
Soule‘ re, L.; Reverchon, S.; Queneau, Y.; Forestier, C.; Doutheau, A. Eur. J. Org.
Chem. 2006, 4731–4736; (c) Leroux, F.; Lefebvre, O.; Schlosser, M. Eur. J. Org.
Chem. 2006, 3147–3151; (d) Buscemi, S.; Pace, A.; Piccionello, A.; Macaluso, G.;
Vivona, N. J. Org. Chem. 2005, 70, 3288–3291; (e) Filler, R.; Banks, R. E.
Organofluorine Chemicals and Their Industrial Applications; Ellis Horwood:
Chichester, UK, 1979.
8. (a) Filler, R.; Kobayashi, Y. Biomedicinal Aspects of Fluorine Chemistry; Tokyo:
Kodansha & Elsevier Biomedical, 1982; (b) Filler, R.; Kobayashi, Y.; Yagupolskii,
L. M. Organofluorine Compounds in Medical Chemistry and Boimedical Application;
Elsevier: Amsterdam, 1993; (c) Prabhakaran, J.; Underwood, M. D.; Parsey, R.
V.; Arango, V.; Majo, V. J.; Simpson, N. R.; Heertum, R. V.; Mann, J. J.; Kumar, J. S.
D. Bioorg. Med. Chem. 2007, 15, 1802–1807.
9. (a) Yi, H.; Song, L. P.; Wang, W.; Liu, J. N.; Zhu, S. Z.; Deng, H. M.; Shao, M. Chem.
Commun. 2010, 46, 6941–6943; (b) Wang, P. Y.; Song, L. P.; Yi, H.; Zhang, M.;
Deng, H. M.; Shao, M. Tetrahedron Lett. 2010, 51, 3975–3977; (c) Song, L. P.; Li,
´
5858.
16. Bala, B. D.; Balamurugan, K.; Perumal, S. Tetrahedron Lett. 2011, 52, 4562–4566.
17. Typical experimental procedure for synthesis of 4a: To a mixture of benzaldehyde
1a (159.0 mg, 1.5 mmol), 1,3-cyclopentanedione 2 (147.0 mg, 1.5 mmol), and
ethyl 4,4,4-trifluoro-3-oxobutanoate 3 (276.0 mg, 1.5 mmol) in 15 mL EtOH
was added 1.0 mmol of NH4OAc as catalyst. The resultant mixture was stirred
at room temperature for 8 h. The progress of the reaction was monitored by
TLC. After completion of the reaction, the solvent was evaporated and the
residue was purified by column chromatography on
a silica gel using
petroleum ether/ethyl acetate (1:1, v/v) as eluent to afford the pure product
4a 371.1 mg, 67% yield.
18. Spectroscopic data for products 4: compound 4a: White solid; mp: 192.6–
193.1 °C; 1H NMR (CDCl3, 500 MHz): d = 0.98 (t, J = 7.0 Hz, 3H), 2.52 (t,
J = 5.0 Hz, 2H), 2.71–2.85 (m, 2H), 2.94 (d, J = 11.5 Hz, 1H), 3.92 (dt,
J1 = 11.5 Hz, J2 = 2.5 Hz, 1H), 4.04 (q, J = 7.0 Hz, 2H), 5.85 (s, 1H), 7.10–7.12
(m, 2H), 7.28–7.35 (m, 3H). 19F NMR (470 MHz, CDCl3): d = À83.85 (s, 3F, CF3);
IR (KBr) mmax: 3426, 3070, 2987, 2939, 2768, 2578, 1741, 1620, 1371, 1351,
1236, 1194, 1166, 1110, 1002, 964, 746, 703 cmÀ1; MS (ESI) m/z: 371 [M+H]+,
393 [M+Na]+; Anal. Calcd for C18H17F3O5: C, 58.38; H, 4.63. Found: C, 58.51; H,
4.75.
19. CCDC 860234 contains the Supplementary crystallographic data for this paper.
These data can be obtained free of charge from the Cambridge Crystallographic
20. Typical experimental procedure for synthesis of 5c: A mixture of 4c (404.5 mg,
1.0 mmol) and p-TsOH (4.0 mmol) in 15 mL toluene was refluxed for 12 h until
completion of the reaction (monitored by TLC). The mixture was cooled to
room temperature. And then it was poured into water and extracted with ethyl
acetate. The organic layer was dried over MgSO4 and filtered. The solvent was
evaporated and the residue was purified by column chromatography on a silica
gel using petroleum ether/ethyl acetate (4:1, v/v) as eluent to afford the pure
product 5c 274.5 mg, 71% yield.
21. Spectroscopic data for products 5: Compound 5c: White solid; mp: 77.3–78.3 °C;
1H NMR (CDCl3, 500 MHz): d = 1.07 (t, J = 7.0 Hz, 3H), 2.50–2.53 (m, 2H), 2.74–
2.86 (m, 2H), 4.02–4.12 (m, 2H), 4.67 (s, 1H), 7.13–7.27 (m, 4H), 19F NMR
(470 MHz, CDCl3): d = À66.98 (s, 3F,); IR (KBr)
mmax: 3061, 2989, 2941, 1732,
1691, 1643, 1375, 1218, 1151, 1067, 1037, 947, 742, 698 cmÀ1; MS (ESI) m/z:
387/389 [M+H]+, 409/411 [M+Na]+; Anal. Calcd for C18H14ClF3O4: C, 55.90; H,
3.65. Found: C, 55.97; H, 3.70.