in such an interaction. Instead, one would expect all methyl groups
to point outward, conserving the symmetry and avoiding steric
contacts. In order to better understand this occurrence, DF-MP2/
cc-pVTZ (cc-pVTZ-PP in the case of Sn and Ge)21 single points
were computed on the DFT optimized geometries. The results
show that, in fact, the BP86-D optimized structures are higher in
energy. The BP86/def2-SVP structures are 2.9 and 0.2 kcal molꢁ1
lower in energy for structures 3 and 4, respectively, than the
BP86-D analogues. The torsion of the isopropyl group seems,
therefore, to be an artifact of the dispersion correction terms.
We have also performed a NBO analysis of the two compounds
at the BP86/def2-SVP level of theory.22 The Sn–H bond is built
from a Sn hybrid orbital with 89.3% p-character. This value is
close to the one reported for compound A (87.7%) and higher
than that of F (65.1%), which again relates to the small JSn–H
coupling constant measured. The p-character of the hybrid is
similar for Ge–H in compound 4 (85.8%). The lone pair of Sn and
Ge is predominantly of s-character (79.4% (Sn) 70.9% (Ge)). In
the dominant Lewis structures, the metals are only covalently
bound to the hydrogen and the ring carbon. However, the
second-order perturbation energy analysis of the NBOs shows
a significant donation from each N lone pair to a p-orbital
of the metal. The values are about 50 kcal molꢁ1 for Ge
(per Ge–N contact) and 35 kcal molꢁ1 for Sn.
T.-K. Sham and J. G. C. Veinot, J. Phys. Chem. C, 2008, 112,
14247–14254.
4 B. E. Eichler and P. P. Power, J. Am. Chem. Soc., 2000, 122,
8785–8786.
5 A. F. Richards, A. D. Phillips, M. M. Olmstead and P. P. Power,
J. Am. Chem. Soc., 2003, 125, 3204–3205.
6 (a) L. W. Pineda, V. Jancik, K. Starke, R. B. Oswald and
H. W. Roesky, Angew. Chem., 2006, 118, 2664–2667
(Angew. Chem., Int. Ed., 2006, 45, 2602–2605); (b) A. Jana,
H. W. Roesky, C. Schulzke and A. Doring, Angew. Chem., 2009,
¨
121, 1126–1129 (Angew. Chem., Int. Ed., 2009, 48, 1106–1109);
(c) A. Jana, D. Ghoshal, H. W. Roesky, I. Objartel and D. Stalke,
J. Am. Chem. Soc., 2009, 131, 1288–1293.
7 S. L. Choong, W. D. Woodul, C. Schenk, A. Stasch,
A. F. Richards and C. Jones, Organometallics, 2011, 30,
5543–5550.
8 G. Leroy, D. Riffi Temsamani and C. Wilante, THEOCHEM,
1994, 306, 21–39.
9 (a) S. M. I. Al-Rafia, A. C. Malcolm, R. Mcdonald,
M. J. Ferguson and E. Rivard, Angew. Chem., 2011, 123,
8504–8507 (Angew. Chem., Int. Ed., 2011, 50, 8354–8357);
(b) S. M. I. Al-Rafia, A. C. Malcolm, S. K. Liew,
M. J. Ferguson and E. Rivard, J. Am. Chem. Soc., 2011, 133,
777–779; (c) K. C. Thimer, S. M. I. Al-Rafia, M. J. Ferguson,
R. McDonald and E. Rivard, Chem. Commun., 2009, 7119–7121.
10 S. Khan, R. Michel, J. M. Dieterich, R. A. Mata, H. W. Roesky,
J.-P. Demers, A. Lange and D. Stalke, J. Am. Chem. Soc., 2011,
133, 17889–17894.
11 S.-P. Chia, H.-X. Yeong and C.-W. So, Inorg. Chem., 2012, 51,
1002–1010.
12 R. Jambor, S. H-Pawlis, M. Schurmann and K. Jurkschat, Eur. J.
Inorg. Chem., 2011, 344–348.
¨
While Dostal et al. exploited the pincer-based NCN ligand
´
to isolate the first monomeric stibinidene and bismuthinidene
derivatives,23 we have shown that such a ligand is also useful
to isolate monomeric Sn(II) and Ge(II) hydrides. This is the
first example of a Sn(II) hydride where no Sn–H intermolecular
interaction is present. The monomeric structures of 3 and 4 are
mainly stabilized by donating electron density to the empty p
orbital of the central metal atoms as supported by theoretical
calculations. The chemistry of these new hydrides will be
explored and published in due course.
13 (a) T. Kottke and D. Stalke, J. Appl. Crystallogr., 1993, 26,
615–619; (b) D. Stalke, Chem. Soc. Rev., 1998, 27, 171–178.
14 (a) F. E. Hahn, L. Wittenbecher, M. Kuhn, T. Lugger and
¨
R. Frohlich, J. Organomet. Chem., 2001, 617–618, 629–634;
¨
¨
(b) K. Jurkschat, S. van Dreumel, G. Dyson, D. Dakternieks,
T. J. Bastow, M. E. Smith and M. Drager, Polyhedron, 1992, 11,
2747–2755.
¨
15 R. Jambor, B. Kasna, K. N. Kirschner, M. Schurmann and
´
¨
K. Jurkschat, Angew. Chem., 2008, 120, 1674–1677 (Angew. Chem.,
Int. Ed., 2008, 47, 1650–1653).
16 E. Rivard, R. C. Fischer, R. Wolf, Y. Peng, W. A. Merrill,
N. D. Schley, Z. Zhu, L. Pu, J. C. Fettinger, S. J. Teat,
I. Nowik, R. H. Herber, N. Takagi, S. Nagase and P. P. Power,
J. Am. Chem. Soc., 2007, 129, 16197–16208.
17 G. H. Spikes, J. C. Fettinger and P. P. Power, J. Am. Chem. Soc.,
2005, 127, 12232–12233.
18 Y. Ding, H. Hao, H. W. Roesky, M. Noltemeyer and
H.-G. Schmidt, Organometallics, 2001, 20, 4806–4811.
Support from the Deutsche Forschungsgemeinschaft
(DFG RO 224/55-3 (H. W. R.), Priority Program 1178 (D. S.),
Emmy Noether Fellowship (A. L.), Deutscher Akademischer
Austausch Dienst (research fellowship to S. K.) and the NSERC
of Canada (scholarship to J.-P. D.) are acknowledged.
19 (a) A. D. Becke, Phys. Rev. A: At., Mol., Opt. Phys., 1988, 38,
3098–3100; (b) J. P. Perdew, Phys. Rev. B, 1986, 33, 8822–8824;
(c) F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7,
3297–3305; (d) B. Metz, H. Stoll and M. Dolg, J. Chem. Phys., 2000,
113, 2563–2569; (e) ORCA, an ab initio, DFT and semiempirical
electronic structure package, version 2.8, 2010.
20 S. Grimme, J. Comput. Chem., 2006, 27, 1787–1799.
21 (a) H.-J. Werner, F. R. Manby and P. J. Knowles, J. Chem. Phys.,
2003, 118, 8149–8160; (b) T. H. Jr. Dunning, J. Chem. Phys., 1989,
90, 1007–1023; (c) K. A. Peterson, J. Chem. Phys., 2003, 119,
11099–11112; (d) H.-J. Werner, P. J. Knowles, R. Lindh,
Notes and references
1 (a) T. Hiyama and T. Kusumoto, Comprehensive Organic Synthesis,
Pergamon, Oxford, UK., 1991, vol. 8, pp. 763–792; (b) G. F. Bradley
and S. R. Stobart, J. Chem. Soc., Dalton Trans., 1974, 264–269.
2 For reviews see: (a) S. K. Mandal and H. W. Roesky, Acc. Chem.
Res., 2012, 45, 298–307; (b) S. S. Sen, S. Khan, P. P. Samuel and
H. W. Roesky, Chem. Sci., 2012, 3, 659–682; (c) S. K. Mandal and
H. W. Roesky, Chem. Commun., 2010, 46, 6016–6041;
(d) E. Rivard and P. P. Power, Dalton Trans., 2008, 4336–4343;
(e) S. Aldridge and A. J. Downs, Chem. Rev., 2001, 101,
3305–3365; (f) C. Jones, Chem. Commun., 2001, 2293–2298;
(g) A. Staubitz, A. P. M. Robertson and I. Manners, Chem.
Rev., 2010, 110, 4079–4124.
F. R. Manby and M. Schutz, MOLPRO, version 2010.1, a package
¨
22 J. P. Foster and F. Weinhold, J. Am. Chem. Soc., 1980, 102,
7211–7218.
3 (a) C.-F. Wang, S.-Y. Xie, S.-C. Lin, X. Cheng, X.-H. Zhang,
R.-B. Huang and L.-S. Zheng, Chem. Commun., 2004, 1766–1767;
(b) C. M. Hessel, E. J. Henderson, J. A. Kelly, R. G. Cavell,
23 P. Simon, F. De Proft, R. Jambor, A. Ruzicka and L. Dostal,
´
Angew. Chem., 2010, 120, 1674–1677 (Angew. Chem., Int. Ed.,
2010, 49, 5468–5471).
c
4892 Chem. Commun., 2012, 48, 4890–4892
This journal is The Royal Society of Chemistry 2012