Page 5 of 7
ACS Catalysis
Sakaguchi, S.; Ishii, Y. A Remarkable Effect of Bases on the
SET, single electron transfer, CV, cyclic voltammetry, SCE,
saturated calomel electrode, TLC, thin layer
chromatography, NMR nuclear magnetic resonance, LED,
light-emitting diode
1
2
3
4
5
6
7
8
Catalytic Radical Addition of Cyanoacetates to Alkenes Using a
Mn(II)/Co(II)/O2 Redox System. Bull. Chem. Soc. Jpn. 2005, 78,
1673–1676.
(8) For recent reviews on organic photocatalysis, see: (a) Marzo,
L.; Pagire, S. K.; Reiser, O.; König, B. Visible-Light Photocatalysis:
Does It Make a Difference in Organic Synthesis? Angew. Chem.
Int. Ed. 2018, 57, 10034–10072; (b) Romero, N. A.; Nicewicz, D.
A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075–
10166; (c) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Dual Catalysis
Strategies in Photochemical Synthesis. Chem. Rev. 2016, 116,
10035–10074; (d) Revathi, L.; Ravindar, L.; Fang, W.-Y.; Rakesh, K.
P.; Qin, H.-L. Visible Light-Induced C-H Bond Functionalization:
A Critical Review. Adv. Synth. Catal. 2018, 360, 4652–4698; For
carbon–carbon bond-forming photoreactions, see: (a) Ravelli,
D.; Protti, S.; Fagnoni, M. Carbon–Carbon Bond Forming
Reactions via Photogenerated Intermediates. Chem. Rev. 2016,
116, 9850–9913; (b) Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A.
Photocatalysis for the Formation of the C−C Bond. Chem. Rev.
2007, 107, 2725–2756.
(9) Product undergoes rearrangement with the carboxylic group
migrating. For more details see Scheme S2 in the Supporting
Information.
(10) Martinez-Haya, R. ; Marzo, L.; König, B. Reinventing the De
Mayo Reaction: Synthesis of 1,5-Diketones or 1,5-Ketoesters via
Visible Light [2+2] Cycloaddition of β-Diketones or β-Ketoesters
with Styrenes. Chem. Commun. 2018, 54, 11602–11605 (see
Supporting Information).
(11) Arnold, D. R.; Du, X.; Henseleit, K. M. The Effect of Meta-
and Para-Methoxy Substitution on the Reactivity of the Radical
Cations of Arylalkenes and Alkanes. Radical Ions in
Photochemistry. Part 26. Can. J. Chem. 1991, 69, 839–852.
(12) (a) Niyazymbetov, M. E.; Rongfeng, Z.; Evans, D. H.
Oxidation Potential as a Measure of the Reactivity of Anionic
Nucleophiles. Behaviour of Different Classes of Nucleophiles. J.
Chem. Soc., Perkin Trans. 2 1996, 1957–1961; (b) Daasbjerg, K.;
Knudsen, S. R.; Sonnichsen, K. N.; Andrade, A. R.; Pedersen, S. U.
Systematic Ranking of Nucleophiles as Electron Donors. Acta
Chem. Scand. 1999, 53, 938–948.
REFERENCES
(1) (a) Classic in Total Synthesis Eds.: Nicolaou, K. C.; Sorensen, E.
J.; Wiley-VCH, Weinheim, 1996, pp 1-19; (b) Classic in Total
Synthesis II Eds. Nicolaou, K. C.; Snyder, S. A.; Wiley-VCH,
Weinheim, 2003, pp 1-12; (c) Nicolaou, K. C.; Vourloumis, D.;
Winssinger, N.; Baran, P. S. The Art and Science of Total
Synthesis at the Dawn of the Twenty-First Century. Angew.
Chem. Int. Ed. 2000, 39, 41–122.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(2) Advanced Organic Chemistry Reactions, Mechanisms and
Structure (6rd Ed.) Smith, M. B.; March, J. John Wiley & Sons,
Hoboken, New Jersey, 2007, pp. 234-296 and 999-1251.
(3) (a) Dénès, F.; Pérez-Luna, A.; Chemla, F. Addition of Metal
Enolate Derivatives to Unactivated Carbon-Carbon Multiple
Bonds. Chem. Rev. 2010, 110, 2366–2447; (b) Dong, Z.; Ren, Z.;
Thompson, S. J.; Xu, Y.; Dong, G. Transition-Metal-Catalyzed C–
H Alkylation Using Alkenes. Chem. Rev. 2017, 117, 9333–9403.
(4) (a) Ohashi, M.; Nakatani, K.; Maeda, H.; Mizuno, K.
Photochemical Monoalkylation of Propanedinitrile by Electron-
Rich Alkenes. Org. Lett. 2008, 10, 2741–2743; (b) Ohashi, M.;
Nakatani, K.; Maeda, H.; Mizuno, K. Intramolecular Polar
Addition Reactions of Active Methylene Moieties to Aryl-
Substituted Alkenes via Photoinduced Electron Transfer.
Tetrahedron Lett. 2010, 51, 5537–5539; (c) Ohashi, M.; Nakatani,
K.; Maeda, H.; Mizuno, K. Selective Photochemical
Monoalkylation of Active Methylene Compounds by Alkenes. A
Green Pathway for Carbon–Carbon Bond Formation. J.
Photochem. Photobiol. A 2010, 214, 161–170.
(5) Arnold, D. R.; Chan, M. S. W.; McManus, K. A. Photochemical
Nucleophile-Olefin Combination, Aromatic Substitution (Photo-
NOCAS) Reaction, Part 12. Factors Controlling the
Regiochemistry of the Reaction with Alcohol as the Nucleophile.
Can. J. Chem. 1996, 74, 2143–2166.
(6) For enolate activation, see: (a) Ko, T. Y.; Youn, S. W.
Cooperative
Indium(III)/Silver(I)
System
for
Oxidative
(13) Luo, J.; Zhang, J. Donor–Acceptor Fluorophores for Visible-
Light-Promoted Organic Synthesis: Photoredox/Ni Dual
Catalytic C(sp3)–C(sp2) Cross-Coupling. ACS Catal. 2016, 6, 873–
877.
Coupling/Annulation of 1,3-Dicarbonyls and Styrenes:
Construction of Five-Membered Heterocycles. Adv. Synth. Catal.
2016, 358, 1934–1941; (b) Wetter, C.; Jantos, K.; Woithe, K.;
Studer,
Addition/Cyclization
A.
Intermolecular
Reactions
Radical
of Alkoxyamines
Addition
and
onto
(14) For examples of MeCN participation in the reaction
mechanism, see: (a) Iwata, Y.; Tanaka, Y.; Kubosaki, S.; Morita, T.;
Yoshimi, Y. A Strategy for Generating Aryl Radicals from
Arylborates through Organic Photoredox Catalysis: Photo-
Meerwein Type Arylation of Electron-Deficient Alkenes. Chem.
Commun. 2018, 54, 1257–1260; (b) Kumagai, Y.; Naoe, T.;
Nishikawa, K.; Osaka, K.; Morita, T.; Yoshimi, Y. Formation of
Carbanions from Carboxylate Ions Bearing Electron-
Withdrawing Groups via Photoinduced Decarboxylation:
Addition of Generated Carbanions to Benzaldehyde. Aust. J.
Chem. 2015, 68, 1668–1671.
(15) Sim, B. A.; Milne, P. H.; Griller, D.; Wayner, D. D. M.
Thermodynamic Significance of ρ+ and ρ- from Substituent
Effects on the Redox Potentials of Arylmethyl Radicals. J. Am.
Chem. Soc. 1990, 112, 6635–6638.
(16) Speckmeier, E.; Fischer, T. G.; Zeitler, K. A Toolbox Approach
To Construct Broadly Applicable Metal-Free Catalysts for
Photoredox Chemistry: Deliberate Tuning of Redox Potentials
Nonactivated Alkenes. Org. Lett. 2003, 5, 2899–2902; (c) Maeda,
H.; Takayama, H.; Segi M. Photoinduced Three-Component
Coupling Reactions of Electron Deficient Alkenes, Dienes and
Active Methylene Compounds. Photochem. Photobiol. Sci. 2018,
17, 1118–1126; (d) Lu, Z.-F.; Shen, Y.-M.; Yue, J.-J.; Hu, H.-W.; Xu,
J.-H.
Photoinduced
Three-Component
Reactions
of
Tetracyanobenzene with Alkenes in the Presence of 1,3-
Dicarbonyl Compounds as Nucleophiles. J. Org. Chem. 2008, 73,
8010–8015.
(7) (a) Linker, T.; Kersten, B.; Linker, U.; Peters, K.; Peters, E.-M.;
von Schnering, H. G. Manganese(III)-Mediated Radical Additions
of Dimethyl Malonate to Olefins. The Chemoselective Synthesis
of Diesters and Lactones. Synlett 1996, 468–470; (b) Hirase, K.;
Iwahama, T.; Sakaguchi, S.; Ishii, Y. Catalytic Radical Addition of
-
Carbonyl Compounds to Alkenes by Mn(II)/Co(II)/O2 System. J.
Org. Chem. 2002, 67, 970–973; (c) Kagayama, T.; Fuke, T.;
ACS Paragon Plus Environment