10.1002/anie.201704529
Angewandte Chemie International Edition
COMMUNICATION
Figure 4 Continuous flow synthesis of AS-136A. A continuous flow telescoped synthesis with modules 1,2,4 and 5 to yield measles therapeutic AS-136A in a
34% isolated yield at a rate of 1.73 g h-1. Using modules individually yields AS-136A in a 75% yield. See the supporting information for additional details.
[1]
a) J. Britton, C. L. Raston, Chem. Soc. Rev. 2017, 46, 1250-1271; b) D.
Webb, T. F. Jamison, Chem. Sci. 2010, 1, 675-680; c) R. L. Hartman, K.
F. Jensen, Lab Chip 2009, 9, 2495-2507; d) B. Gutmann, D. Cantillo, C.
O. Kappe, Angew. Chem. Int. Ed. 2015, 54, 6688-6728; e) D. T.
McQuade, P. H. Seeberger, J. Org. Chem. 2013, 78, 6384-6389; f) K.
Gilmore, P. H. Seeberger, The Chemical Record 2014, 14, 410-418; g)
J. C. Pastre, D. L. Browne, S. V. Ley, Chem. Soc. Rev. 2013, 42, 8849-
8869; h) R. Porta, M. Benaglia, A. Puglisi, Org. Process. Res. Dev.
2016, 20, 2-25; i) S. V. Ley, D. E. Fitzpatrick, R. M. Myers, C.
Battilocchio, R. J. Ingham, Angew. Chem. Int. Ed. 2015, 54, 10122-
10136; j) S. V. Ley, D. E. Fitzpatrick, R. J. Ingham, R. M. Myers, Angew.
Chem. Int. Ed. 2015, 54, 3449-3464.
means that excess reagents and by-products are carried
through to subsequent steps; decreasing yields through
unwanted reactivity. In theory, decreasing the amount of excess
reagent in each step could aid the telescoped process. However,
when experimentally tested, modules 1, 2 and 3 resulted in
significantly decreased yields. For example, a 1:1:1.2 ratio of
t
ethyl propiolate: 2,2-difluoroethylamine: BuONO resulted in only
37% yield compared to 70% when using a 1:2:2.4 ratio.
Furthermore, using only two equivalents of MeI in module 3
resulted in 39% yield, compared 100% when using eight (Table
S2). Second, using Syrris® pumps decreased the efficiency of
module 1 and 2 (75-87% compared to 99%) as uneven fluid
delivery is observed at high back pressures (~22-24 bar).
In conclusion, a continuous flow platform for the synthesis
of valuable, highly functionalized pyrazoles and pyrazolines has
been developed. Generating common pyrazole cores for
subsequent modification in a range of modules allows a wide
breadth of chemical space to be readily and efficiently accessed.
Importantly, modules mediate rapid continuous flow chemistry
(1–60 min) by operating solvents above their atmospheric boiling
points for improved kinetics. This effect removed the need for
stoichiometric Ag2O and base for terminal aryl alkynes
dipolarphiles to participate in [3+2] cycloaddition with 2. To
demonstrate the capabilities of this system, AS-136A was
synthesized in 75% yield (99% purity) using three sets of
individual modules, or through a telescoped continuous flow
multi-step process yielding 1.73 g h-1 (34% yield, 72% purity) of
isolated product. This approach builds upon previous syntheses
of this molecule requiring several additional steps and multiple
intermediate isolations.[12b,19]
[2]
[3]
a) C. Wiles, P. Watts, Green Chem. 2012, 14, 38-54; b) R. E. Martin, F.
Morawitz, C. Kuratli, A. M. Alker, A. I. Alanine, Eur. J. Org. Chem. 2012,
2012, 47-52; c) T. N. Glasnov, C. O. Kappe, Chem. Eur. J. 2011, 17,
11956-11968; d) T. Razzaq, C. O. Kappe, Chem. Asian J. 2010, 5,
1274-1289.
a) Z. He, T. F. Jamison, Angew. Chem. Int. Ed. 2014, 53, 3353-3357;
Angew. Chem. 2014, 126, 3421-3425; b) A. R. Bogdan, S. L. Poe, D. C.
Kubis, S. J. Broadwater, D. T. McQuade, Angew. Chem. Int. Ed. 2009,
48, 8547-8550; Angew. Chem. 2009, 121, 8699-8702; c) P. R. D.
Murray, D. L. Browne, J. C. Pastre, C. Butters, D. Guthrie, S. V. Ley,
Org. Process. Res. Dev. 2013, 17, 1192-1208.
[4]
a) D. Cambié, C. Bottecchia, N. J. W. Straathof, V. Hessel, T. Noël,
Chem. Rev. 2016, 116, 10276-10341; b) Y. Su, N. J. W. Straathof, V.
Hessel, T. Noël, Chem. Eur. J. 2014, 20, 10562-10589; c) N. J. W.
Straathof, Y. Su, V. Hessel, T. Noel, Nat. Protocols 2016, 11, 10-21; d)
J. P. Knowles, L. D. Elliott, K. I. Booker-Milburn, Beilstein J. Org. Chem.
2012, 8, 2025-2052; e) H. Seo, M. H. Katcher, T. F. Jamison, Nat.
Chem. 2017, 9, 453-456; f) X. Wang, G. D. Cuny, T. Noël, Angew.
Chem. Int. Ed. 2013, 52, 7860-7864; Angew. Chem. 2013, 125, 8014-
8018; g) S. Parisien-Collette, A. C. Hernandez-Perez, S. K. Collins, Org.
Lett. 2016, 18, 4994-4997; h) A. C. Hernandez-Perez, S. K. Collins,
Angew. Chem. Int. Ed. 2013, 52, 12696-12700; Angew. Chem. 2013,
125, 12928-12932.
[5]
[6]
a) S. T. R. Müller, T. Wirth, ChemSusChem 2015, 8, 245-250; b) B. J.
Deadman, S. G. Collins, A. R. Maguire, Chem. Eur. J. 2015, 21, 2298-
2308; c) M. Movsisyan, E. I. P. Delbeke, J. K. E. T. Berton, C.
Battilocchio, S. V. Ley, C. V. Stevens, Chem. Soc. Rev. 2016, 45,
4892-4928; d) S. T. R. Müller, A. Murat, D. Maillos, P. Lesimple, P.
Hellier, T. Wirth, Chem. Eur. J. 2015, 21, 7016-7020.
Acknowledgements
We thank the Bill and Melinda Gates Foundation (“Medicines for
All” initiative) for financial support.
a) D. R. Snead, T. F. Jamison, Angew. Chem. Int. Ed. 2015, 54, 983-
987; Angew. Chem. 2015, 127, 997-1001; b) A. Adamo, R. L.
Beingessner, M. Behnam, J. Chen, T. F. Jamison, K. F. Jensen, J.-C.
M. Monbaliu, A. S. Myerson, E. M. Revalor, D. R. Snead, T. Stelzer, N.
Weeranoppanant, S. Y. Wong, P. Zhang, Science 2016, 352, 61-67; c)
C. Dai, D. R. Snead, P. Zhang, T. F. Jamison, J. Flow Chem. 2015, 5,
133-138; d) P. Zhang, M. G. Russell, T. F. Jamison, Org. Process. Res.
Keywords: Multi-Step Continuous Flow Synthesis • Pyrazoles •
Assembly Line Synthesis • Active Pharmaceutical Ingredients •
Agrochemicals
This article is protected by copyright. All rights reserved.