Organic Letters
Letter
C. A.; Shu, C.; Incarvito, C.; Hartwig, J. F. J. Am. Chem. Soc. 2003,
125, 14272−14273. (d) Singh, O. V.; Han, H. J. Am. Chem. Soc. 2007,
129, 774−775. (e) Roggen, M.; Carreira, E. M. J. Am. Chem. Soc.
2010, 132, 11917. (f) Ye, K.-Y.; He, H.; Liu, W. B.; Dai, L.-X.;
Helmchen, G.; You, S.-L. J. Am. Chem. Soc. 2011, 133 (46), 19006−
19014. (g) Zhuo, C.-X.; Zhang, X.; You, S.-L. ACS Catal. 2016, 6,
5307−5310.
(3) (a) Brak, K.; Ellman, J. A. J. Am. Chem. Soc. 2009, 131, 3850−
3851. (b) Gopula, B.; Chiang, C.-W.; Lee, W. Z.; Kuo, T.-S.; Wu, P.-
Y; Henschke, J. P.; Wu, H.-L. Org. Lett. 2014, 16, 632−635. (c) Li, Y.;
Liu, B.; Xu, M.-H. Org. Lett. 2018, 20, 2306−2310.
(4) (a) Grossman, R. B.; Davis, W. M.; Buchwald, S. L. J. Am. Chem.
Soc. 1991, 113, 2321. (b) Patel, S. J.; Jamison, T. F. Angew. Chem., Int.
Ed. 2004, 43, 3941. (c) Skucas, E.; Kong, J. R.; Krische, M. J. J. Am.
Chem. Soc. 2007, 129, 7242.
(5) (a) Anderson, C. E.; Overman, L. E. J. Am. Chem. Soc. 2003, 125,
12412−12413. (b) Overman, L. E.; Owen, C. E.; Pavan, M. M.;
Richards, C. J. Org. Lett. 2003, 5, 1809−1810. (c) Anderson, C. E.;
Donde, Y.; Douglas, C. J.; Overman, L. E. J. Org. Chem. 2005, 70,
648−657. (d) Weiss, M. E.; Fischer, D. F.; Xin, Z. Q.; Jautze, S.;
Schweizer, W. B.; Peters, R. Angew. Chem., Int. Ed. 2006, 45, 5694−
5698. (e) Jautze, S.; Seiler, P.; Peters, R. Angew. Chem., Int. Ed. 2007,
46, 1260−1264.
(13) Li, B.; Chen, J.; Zhang, Z.; Gridnev, I. D.; Zhang, W. Angew.
Chem., Int. Ed. 2019, 58, 7329−7334.
(14) Gao, W.; Wang, Q.; Xie, Y.; Lv, H.; Zhang, X. Chem. - Asian J.
2016, 11, 231−233.
(15) (a) Gao, W.; Lv, H.; Zhang, T.; Yang, Y.; Chung, L. W.; Wu, Y.-
D.; Zhang, X. Chem. Sci. 2017, 8, 6419−6422. (b) Li, X.; You, C.; Li,
S.; Yang, Y.; Lv, H.; Zhang, X. Org. Lett. 2017, 19, 5130−5133.
(c) Long, J.; Gao, W.; Guan, Y.; Lv, H.; Zhang, X. Org. Lett. 2018, 20,
5914−5917. (d) Guan, Y.-Q.; Han, Z.; Li, X.; You, C.; Tan, X.; Lv,
H.; Zhang, X. Chem. Sci. 2019, 10, 252−256.
(16) Only trace over-reduction product was detected in this
transformation, and the low isolated yield was attributed to low
conversion. Full conversion can be obtained by increasing the
temperature, but over-reduction product dramatically increased,
which made purification very difficult.
(17) The absolute configuration of compound 2q has been
established by comparison with literature data (for R-2q in ref 2a:
([α]D25 = −31.4 (c 1.0, CHCl3), 95% ee for R; our experiment result
20
of 2q: [α]D = −20.6 (c = 1.0, CHCl3) (90% ee)). All the other
configurations are uncertain and based on the assumption that the
configuration follows that of 2q.
(6) (a) Lutete, L. M.; Kadota, I.; Yamamoto, Y. J. Am. Chem. Soc.
2004, 126, 1622−1623. (b) LaLonde, R. L.; Sherry, B. D.; Kang, E. J.;
Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452−2453. (c) Narsireddy,
M.; Yamamoto, Y. J. Org. Chem. 2008, 73, 9698−9709. (d) Chen, Q.-
A.; Chen, Z.; Dong, V. M. J. Am. Chem. Soc. 2015, 137, 8392−8395.
(e) Fang, Y. Q.; Tadross, P. M.; Jacobsen, E. N. J. Am. Chem. Soc.
2014, 136, 17966−17968. (f) Bernar, I.; Fiser, B.; Blanco-Ania, D.;
́
Gomez-Bengoa, E.; Rutjes, F. P. J. T. Org. Lett. 2017, 19, 4211−4214.
(7) Selected reviews for recent advances on transition-metal-
catalyzed asymmetric hydrogenation, see: (a) Xie, J.; Zhu, S.; Zhou,
Q. Chem. Rev. 2011, 111, 1713−1760. (b) Ager, D. J.; de Vries, A. H.
M.; de Vries, J. G. Chem. Soc. Rev. 2012, 41, 3340−3380. (c) Xie, J.;
Zhou, Q. Huaxue Xuebao 2012, 70, 1427−1438. (d) Wang, D.-S.;
Chen, Q.-A.; Lu, S.-M. Chem. Rev. 2012, 112, 2557−2590. (e) Liu, Y.;
Wang, Z.; Ding, K. Huaxue Xuebao 2012, 70, 1464−1470.
̀
́
(f) Verendel, J. J.; Pamies, O.; Dieguez, M.; Andersson, P. G.
Chem. Rev. 2014, 114, 2130−2169. (g) Zhang, Z.; Butt, N. A.; Zhang,
W. Chem. Rev. 2016, 116, 14769−14827. (h) Kraft, S.; Ryan, K.;
Kargbo, R. B. J. Am. Chem. Soc. 2017, 139, 11630−11641. (i) Zhu, S.;
Zhou, Q. Acc. Chem. Res. 2017, 50, 988−1001. (j) Meemken, F.;
Baiker, A. Chem. Rev. 2017, 117, 11522−11569. (k) Margarita, C.;
Andersson, P. G. J. Am. Chem. Soc. 2017, 139, 1346−1356.
(8) (a) Liu, T.-L.; Wang, C.-J.; Zhang. Angew. Chem., Int. Ed. 2013,
52, 8416−8419. (b) Zhou, M.; Liu, T.-L.; Cao, M.; Xue, Z.; Lv, H.;
Zhang, X. Org. Lett. 2014, 16, 3484−3487. (c) Wang, Q.; Gao, W.;
Lv, H.; Zhang, X. Chem. Commun. 2016, 52, 11850−11853. (d) Hu,
Q.; Hu, Y.; Liu, Y.; Zhang, Z.; Liu, Y.; Zhang, W. Chem. - Eur. J. 2017,
23, 1040−1043. (e) Selva, E.; Sempere, Y.; Ruiz-Martínez, D.; Pablo,
́
O.; Guijarro, D. J. Org. Chem. 2017, 82, 13693−13699.
(9) Zhang, Z.; Butt, N. A.; Zhou, M.; Liu, D.; Zhang, W. Chin. J.
Chem. 2018, 36, 443−454.
(10) (a) Hamada, Y.; Koseki, Y.; Fujii, T.; Maeda, T.; Hibino, T.;
Makino, K. Chem. Commun. 2008, 46, 6206−6208. (b) Hibino, T.;
Makino, K.; Sugiyama, T.; Hamada, Y. ChemCatChem 2009, 1, 237−
240.
(11) (a) Yang, P.; Xu, H.; Zhou, J. Angew. Chem., Int. Ed. 2014, 53,
12210−12213. (b) Guo, S.; Yang, P.; Zhou, J. Chem. Commun. 2015,
51, 12115−12117. (c) Guo, S.; Zhou, J. Org. Lett. 2016, 18, 5344−
5347. (d) Xu, H.; Yang, P.; Chuanprasit, P.; Hirao, H.; Zhou, J.
Angew. Chem., Int. Ed. 2015, 54, 5112−5116. (e) Yang, P.; Lim, L. H.;
Chuanprasit, P.; Hirao, H.; Zhou, J. Angew. Chem., Int. Ed. 2016, 55,
12083−12087.
(12) Shevlin, M.; Friedfeld, M. R.; Sheng, H.; Pierson, N. A.; Hoyt, J.
M.; Campeau, L.-C.; Chirik, P. J. J. Am. Chem. Soc. 2016, 138, 3562−
3569.
D
Org. Lett. XXXX, XXX, XXX−XXX