2650
S. P. Chavan et al. / Tetrahedron Letters 53 (2012) 2647–2650
Somfai, P. J. Org. Chem. 2007, 72, 4246; (h) Honda, T.; Matsukawa, T.; Takahashi,
K. Org. Biomol. Chem. 2011, 9, 673.
6. (a) Chavan, S. P.; Zubaidha, P. K.; Ayyangar, N. R. Tetrahedron Lett. 1992, 33,
4605; (b) Scherkenbeck, T.; Siegel, K. Org. Process Res. Dev. 2005, 9, 216.
7. Keusenkothen, P. F.; Smith, M. B. J. Chem. Soc., Perkin Trans. 1 1994, 2485.
8. Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413.
9. Mavromoustakos, T.; Moutevelis-Minakakis, P.; Kokotos, C. G.; Kontogianni, P.;
Politi, A.; Zoumpoulakis, P.; Findlay, J.; Cox, A.; Balmforth, A.; Zoga, A.;
Iliodromitis, E. Bioorg. Med. Chem. 2006, 14, 4353.
10. The LCMS revealed three peaks with equal integration and same mass.
11. CCDC 866111 (17a) contains the Supplementary crystallographic data for this
Letter. These data can be obtained free of charge from The Cambridge
12. Kagabu, S.; Shimizu, Y.; Ito, C.; Moriya, K. Synthesis 1992, 830.
13. Allylic oxidation, synthesis of 18
diastereomeric mixture 20 (a, b) into the required isomer 20(b) in
good yields.16 The conversion of butenolide 20(b) into (ꢀ)-stemoa-
mide is well documented in the literature in two steps,5g hence this
constitutes the formal total synthesis of (ꢀ)-stemoamide. By per-
forming this sequence of reactions we were able to convert ketone
5 into butenolide 20(b) in 27% overall yields.
In conclusion, the formal total synthesis of (ꢀ)-stemoamide was
achieved by taking advantage of RCM and allylic oxidation in 11
steps in 15% overall yield. The alternate route to seven membered
ring construction was developed using Grignard reaction and base
induced cyclization to furnish butenolide 20(b) in 14 steps in 11%
overall yield. Complete novel epimerization of 20(a, b) to expected
isomer 20(b) was achieved successfully.
To the a,b-unsaturated ester 14 (400 mg, 1.7 mmol) in acetic acid (10 mL), was
added selenium dioxide (284 mg, 2.5 mmol) and the resulting reaction mixture
was heated at reflux for 5 h. The reaction mixture was filtered on celite and the
residue was washed with ethyl acetate (50 mL). The collected filtrates were
concentrated in vacuo and purified using flash chromatography (EtOAc) to
afford hydroxy compound 15 (272 mg, 45%) as a crystalline solid (mp 104–
Acknowledgments
105 °C). IR (CHCl3) mmax
: 3367, 2925, 2800, 1706, 1663, 1402, 1223,
K.R.H. thanks the CSIR, New Delhi, India for the financial
support in the form of fellowship and Dr. H.B. Borate and Dr. U.
R. Kalkote for their help.
1175 cmꢀ1.1H NMR (400 MHz, CDCl3): d 5.80 (s, 1H), 5.41 (t, J = 7.2 Hz, 1H),
4.60 (d, J = 6.2 Hz, 1H), 4.18 (q, J = 7.2 Hz, 2H), 4.11 (br d, J = 14 Hz, 1H), 2.34–
2.65 (m, 4H), 2.20–2.25 (m, 1H), 1.88–2.09 (m, 2H), 1.54–1.61 (m, 2H), 1.30 (t,
J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) d 175.7, 165.6, 163.9, 117.5, 77.2,
60.4, 60.2, 42.8, 35.3, 30.3, 25.6, 21.9, 14.2; ESIMS (m/z): 254 (M+H)+, 276
(M+Na)+.
References and notes
14. CCDC 866112 (18) contains the supplementary crystallographic data for this
Letter. These data can be obtained free of charge from The Cambridge
15. (a) Stephenson, L. M.; Speth, D. R. J. Org. Chem. 1979, 44, 4683; (b) Patel, R. M.;
Puranik, V. G.; Argade, N. P. Org. Biomol. Chem. 2011, 9, 6312; (c) Gyoosoon, P.;
Jang, C. H.; Woo, S. J.; Choon, S. R. Bull. Korean Chem. Soc. 1856, 2005, 26.
16. Epimerization of 20(a, b) to 20(b).
1. (a) Götz, M.; Strunz, G. M. Tuberostemonine and Related Compounds: The
Chemistry of Stemona Alkaloids’. In Alkaloids; Wiesner, G., Ed.; Vol. 9;
Butterworths: London, 1975; MTP, International Review of Sciences Organic
Chemistry, Series One, pp 143–160; (b) Sakata, K.; Aoki, K.; Chang, C.-F.;
Sakurai, A.; Tamura, S.; Murakoshi, S. Agric. Biol. Chem. 1978, 42, 457.
2. Kongkiatpaiboon, S.; Schinnerl, J.; Felsinger, S.; Keeratinijakal, V.; Vajrodaya, S.;
Gritsanapan, W.; Brecker, L.; Greger, H. J. Nat. Prod. 1931, 2011, 74.
To the diastereomeric mixture of butenolide 20(a, b) (30 mg, 0.15 mmol) in
anhydrous DCM (5 mL), was added triethylamine (0.04 ml, 2.9 mmol) and the
reaction mixture was stirred for 2 days. The reaction mixture was concentrated
in vacuo and the residue purified using flash chromatography (2:98
3. Lin, W.-H.; Ye, Y.; Xu, R.-S. J. Nat. Prod. 1992, 55, 571.
4. Reviews: (a) Alibés, R.; Figueredo, M. Eur. J. Org. Chem. 2009, 15, 2421; (b) Jezek,
E.; Reiser, O. Chemtracts 2005, 18, 200; (c) Pilli, R. A.; Ferreira de Oliveira, M. C.
Nat. Prod. Rep. 2000, 17, 117; (d) Pilli, R. A.; Rosso, G. B.; Ferreira de Oliveira, M.
C. Nat. Prod. Rep. 1908, 2010, 27.
5. Total and formal syntheses of (ꢀ)-stemoamide: (a) Williams, D. R.; Reddy, J. P.;
Amato, G. S. Tetrahedron Lett. 1994, 35, 6417; (b) Kinoshita, A.; Mori, M. J. Org.
Chem. 1996, 61, 8356; (c) Jacobi, P. A.; Lee, K. J. Am. Chem. Soc. 2000, 122, 4295;
(d) Gurjar, M. K.; Reddy, D. S. Tetrahedron Lett. 2002, 43, 295; (e) Sibi, M. P.;
Subramanian, T. Synlett 2004, 1211; (f) Olivo, H. F.; Tovar-Miranda, R.;
MeOH:EtOAc) to afford diastereomerically pure butenolide 20(b) (24 mg,
80%) as a white solid (mp 158–159 °C, lit.5g mp 157–158 °C) ½a 2D5
ꢂ
227 (, 0.4
_
CHCl3), lit.5g-½a D20
ꢂ
– 224 (c, 0.4 CHCl3), IR (CHCl3) mmax: 2928, 2850, 1753, 1665,
1454, 1223, 911, 750 cmꢀ1 1H NMR (500 MHz, CDCl3): d 5.98 (s, 1H), 5.00–5.03
.
(m, 1H), 4.77–4.81 (m, 1H), 4.29–4.32 (m, 1H), 2.49–2.58 (m, 5H), 1.84–1.94
(m, 2H), 1.68–-1.76 (m, 1H), 1.40–1.48 (m, 1H); 13C NMR (125 MHz, CDCl3) d
174.5, 174.1, 171.7, 115.9, 82.9, 58.1, 43.4, 34.5, 30.2, 27.7, 25.7; ESIMS (m/z):
208 (M+H)+, 230 (M+Na)+.
´
Barragan, E. J. Org. Chem. 2006, 71, 3287; (g) Torssell, S.; Wanngren, E.;