ORGANIC
LETTERS
2012
Vol. 14, No. 9
2418–2421
Synthesis of 3,5-Disubstituted Isoxazoles
via Cope-Type Hydroamination of
1,3-Dialkynes
Liangguang Wang, Xiaoqiang Yu,* Xiujuan Feng, and Ming Bao*
State Key Laboratory of Fine Chemicals, Dalian University of Technology,
Dalian 116023, China
yuxiaoqiang@dlut.edu.cn; mingbao@dlut.edu.cn
Received April 5, 2012
ABSTRACT
An efficient method for the synthesis of 3,5-disubstituted isoxazoles is described. The reactions of 1,3-dialkynes with hydroxylamine proceeded
smoothly in DMSO under mild reaction conditions to produce 3,5-disubstituted isoxazoles in satisfactory to excellent yields.
The development of convenient and efficient methods for
the synthesis of isoxazoles has attracted considerable atten-
tion. Isoxazoles represent an interesting structural motif
found frequently in various bioactive molecules and natural
products.1 Over the past four decades, many methods have
been developed for the construction of the isoxazole nucleus,
including the [3 þ 2] cycloaddition of alkenes/alkynes with
nitrile oxides (1,3-dipoles derivated from hydroximinoyl
chlorides, nitro compounds, and aldoximes);2 the reaction
of hydroxylamine with a three-carbon atom component
(such as 1,3-dicarbonyl compound, R,β-unsaturated carbo-
nyl compound, and R,β-unsaturated nitrile);3 the cyclization
of alkynyl oxime ethers;4 and others.5 Although mono- and
polysubstituted-isoxazoles can be obtained using these meth-
ods, the synthesis frequently suffers from drawbacks, such as
multistep reactions, harsh reaction conditions (strong bases
or strong mineral acids are often required, or prolonged
heating to high temperature is necessary), and the use of
transition-metal catalysts or special starting materials.
(1) For reviews, see: (a) Sperry, J. B.; Wright, D. L. Curr. Opin. Drug
Discovery Dev. 2005, 8, 723. (b) Lakhvich, F. A.; Koroleva, E. V.;
Akhrem, A. A. Chem. Heterocycl. Compd. 1989, 25, 359.
(2) For the [3 þ 2] cycloaddition of alkenes/alkynes with nitrile
oxides, see: (a) Gray, T. C.; Hasanayn, F.; Richardson, D. P.; Markgraf,
J. H. J. Heterocycl. Chem. 2009, 46, 1318. (b) Grecian, S.; Fokin, V. V.
Angew. Chem., Int. Ed. 2008, 47, 8285. (c) Cecchi, L.; Sarlo, F. D.;
Machetti, F. Eur. J. Org. Chem. 2006, 4852. (d) Sheng, S.-R.; Xin, Q.;
Liu, X.-L.; Sun, W.-K.; Guo, R.; Huang, X. Synthesis 2006, 2293. (e)
Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.;
Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. 2005, 127, 210. (f)
Hansen, T. V.; Wu, P.; Fokin, V. V. J. Org. Chem. 2005, 70, 7761. (g)
Denmark, S. E.; Kallemeyn, J. M. J. Org. Chem. 2005, 70, 2839. (h)
Moriya, O.; Urataa, Y.; Endo, T. J. Chem. Soc., Chem. Commun. 1991,
884. (i) Moriya, O.; Urataa, Y.; Endo, T. J. Chem. Soc., Chem. Commun.
1991, 17.
(4) For the cyclization of alkynyl oxime ethers, see: (a) Ueda, M.;
Ikeda, Y.; Sato, A.; Ito, Y.; Kakiuchi, M.; Shono, H.; Miyoshi, T.;
Naito, T.; Miyata, O. Tetrahedron 2011, 67, 4612. (b) Ueda, M.; Sato, A.;
Ikeda, Y.; Miyoshi, T.; Naito, T.; Miyata, O. Org. Lett. 2010, 12, 2594.
(c) Waldo, J. P.; Larock, R. C. J. Org. Chem. 2007, 72, 9643. (d) Waldo,
J. P.; Larock, R. C. Org. Lett. 2005, 7, 5203.
(5) Other methods for synthesis of isoxazoles, see: (a) Burkhard,
J. A.; Tchitchanov, B. H.; Carreira, E. M. Angew. Chem., Int. Ed. 2011,
50, 5379. (b) Debleds, O.; Gayon, E.; Ostaszuk, E.; Vrancken, E.;
Campagne, J.-M. Chem.;Eur. J. 2010, 16, 12207. (c) Brahma, S.;
Ray, J. K. J. Heterocycl. Chem. 2008, 45, 311. (d) Willy, B.; Rominger,
(3) For the reaction of hydroxylamine with a three-carbon atom
component, see: (a) Tang, S.; He, J.; Sun, Y.; He, L.; She, X. J. Org.
Chem. 2010, 75, 1961. (b) Praveen, C.; Kalyanasundaram, A.; Perumal,
P. T. Synlett 2010, 777. (c) Valizadeh, H.; Amiri, M.; Gholipur, H. J.
Heterocyclic Chem. 2009, 46, 108. (d) Tang, S.; He, J.; Sun, Y.; He, L.;
She, X. Org. Lett. 2009, 11, 3982. (e) Heravi, M. M.; Derikvand, F.;
Haeri, A.; Oskooie, H. A.; Bamoharram, F. F. Synth. Commun. 2008, 38,
135. (f) Rosa, F. A.; Machado, P.; Bonacorso, H. G.; Zanatta, N.;
Martins, M. A. P. J. Heterocyclic Chem. 2008, 45, 879. (g) Ahmed,
M. S. M.; Kobayashi, K.; Mori, A. Org. Lett. 2005, 7, 4487. (h)
Cuadrado, P.; Gonzalez-Nogal, A. M.; Valero, R. Tetrahedron 2002,
58, 4975. (i) Katritzky, A. R.; Wang, M.; Zhang, S.; Voronkov, M. V. J.
Org. Chem. 2001, 66, 6787. (j) Kashima, B. C.; Shirai, S. I.; Yoshiwara,
N.; Omote, Y. J. Chem. Soc., Chem. Commun. 1980, 826.
€
F.; Muller, T. J. J. Synthesis 2008, 293. (e) Bourbeau, M. P.; Rider, J. T.
Org. Lett. 2006, 8, 3679. (f) Padwa, A.; Stengel, T. Arkivoc 2005, 21. (g)
Itoh, K.-I.; Sakamaki, H.; Nakazato, N.; Horiuchi, A.; Horn, E.;
Horiuchi, C. A. Synthesis 2005, 3541. (h) Kato, T.; Yamanaka, H.;
Yasuda, N. J. Org. Chem. 1967, 32, 3593.
(6) (a) Xu, Z.; Yu, X.; Feng, X.; Bao, M. J. Org. Chem. 2011, 76, 6901.
(b) Feng, X.; Zhao, Z.; Yang, F.; Jin, T.; Ma, Y.; Bao, M. J. Organomet.
Chem. 2011, 696, 1479. (c) Du, X.; Dai, Y.; He, R.; Lu, S.; Bao, M. Synth.
Commun. 2009, 39, 3940.
r
10.1021/ol300872e
Published on Web 04/26/2012
2012 American Chemical Society